# **Shaheed Bhagat Singh State Technical Campus**

Moga Road, Ferozepur-152004 (Punjab)

# Study Scheme for B.Tech.in CSE (Batch 2015)

| Thir    | d Semester |                                                       |           |                  |              |     |                               |                               |                |         |
|---------|------------|-------------------------------------------------------|-----------|------------------|--------------|-----|-------------------------------|-------------------------------|----------------|---------|
| Sr.     | Comman     | •                                                     | Sch<br>Te | edu<br>eachi     | le of<br>ing |     | Eval                          |                               |                |         |
| No<br>· | Code       | Course Name                                           | CBCS<br>* | ۱ <sup>L</sup> S | Т            | P   | Mid<br>Semester<br>Assessment | End<br>Semester<br>Assessment | Total<br>Marks | Credits |
| 1.      | BTCS-301A  | Computer Architecture<br>and Organization             | С         | 3                | -            | -   | 40                            | 60                            | 100            | 3       |
| 2.      | BTAM-302A  | Engineering<br>Mathematics –III                       | С         | 3                | str          | 2   | 40                            | 60                            | 100            | 4       |
| 3.      | BTCS-303A  | DigitalCircuits &Logic<br>Design                      | C         | 3                | 1            | 5   | 40                            | 60                            | 100            | 4       |
| 4.      | BTCS-304A  | Data Structures                                       | C         | 3                | 1            | -   | 40                            | 60                            | 100            | 4       |
| 5.      | BTCS-305A  | Object Oriented Program<br>mingusing C++              | C         | 3                | 1            | -   | 40                            | 60                            | 100            | 4       |
| 6.      | BTCS-306A  | Data Structures<br>Laboratory                         | c,        | -                | LE           | 3   | 30                            | 20                            | 50             | 1       |
| 7.      | BTCS-307A  | Training-I                                            | Т         | 1-0              |              | 1-1 | 60                            | 40                            | 100            | 2       |
| 8.      | BTCS-308A  | Digital Circuits & Logic<br>Design Laboratory         | С         | 1                | 2            | 2   | 30                            | 20                            | 50             | 1       |
| 9.      | BTCS-309A  | Object Oriented Program<br>mingusingC++<br>Laboratory | С         | -                | -            | 3   | 30                            | 20                            | 50             | 1       |
| 10.     | BTHU-301   | Professional Skills-I                                 | PS        | 3                | -            | 2   | 30                            | 20                            | 50             | 1       |
| 11.     |            | Essentials of IT<br>(Value Added)                     | TE        | 2                | D            | -   |                               |                               |                |         |
|         |            | Total                                                 | 2025      | 15               | 4,           | 10  | 380                           | 420                           | 800            | -       |
|         | Tot        | tal Contact Hours                                     |           |                  | 29           |     |                               | otal Credits                  |                | 25      |
|         |            |                                                       |           |                  |              |     |                               |                               |                |         |

# Semester – 3

# **Shaheed Bhagat Singh State Technical Campus**

Moga Road, Ferozepur-152004 (Punjab)

# Study Scheme for B.Tech.in CSE (Batch 2015)

# Semester-4

| Four  | th Semester |                                                      |     |     |                                    |      | $\land$    |              |       |         |
|-------|-------------|------------------------------------------------------|-----|-----|------------------------------------|------|------------|--------------|-------|---------|
|       | Sche        |                                                      |     |     | lule of Teaching Evaluation Scheme |      |            |              |       |         |
| Sr.   | Course Code | Course Name                                          | CBC | 5   | A                                  | 15   | Mid        | End          | Total | Credits |
| INU.  |             | ~ <u>,</u> 5"                                        | S*  |     | -                                  |      | Assessment | Assessment   | Marks |         |
| 1.    | BTCS-401A   | Operating System                                     | С   | 3   | rr                                 | -    | 40         | 60           | 100   | 4       |
| 2.    | BTCS-402A   | Discrete Structures                                  | C   | 3   | Z                                  | -    | 40         | 60           | 100   | 4       |
| 3.    | BTCS-403A   | Computer Networks-I                                  | C   | 3   | 1                                  | -    | 40         | 60           | 100   | 4       |
| 4.    | BTCS-404A   | Microprocessor & Assemb<br>lyLanguage<br>Programming | C   | 3   | 1                                  | -    | 40         | 60           | 100   | 4       |
| 5.    | BTCS-405A   | System Programming                                   | 2   | 3   |                                    | -    | 40         | 60           | 100   | 4       |
| 6.    | BTCS-406A   | Operating System<br>Laboratory                       | С   | (X) | 1-                                 | 2    | 2 30       | 20           | 50    | 1       |
| 7.    | BTCS407A    | Computer Networks-<br>I Laboratory                   | C   | F   | X                                  | 2    | 30 3       | 20           | 50    | 1       |
| 8.    | BTCS-408A   | Microprocessor & Assemb<br>lyLanguage Laboratory     | С   |     | 3                                  | 2    | 30         | 20           | 50    | 1       |
| 9.    | BTCS-409A   | System Programming Lab<br>oratory                    | ζc  | 5-  | ς                                  | 2    | 30         | 20           | 50    | 1       |
| 10.   | BTHU-401    | Professional Skills- II                              | OE  |     | 1                                  | 2    | 30         | 20           | 50    | 1       |
| Total |             |                                                      |     | 15  | <b>, 5</b>                         | (10/ | 350        | 400          | 750   | -       |
|       | Tot         | al Contact Hours                                     |     |     | 30                                 |      | AB To      | otal Credits |       | 25      |
|       |             |                                                      |     |     |                                    |      |            |              |       |         |

# Syllabus of 3rd Semester CSE (Scheme 2015)

# Shaheed Bhagat Singh State Technical Campus, Ferozepur

Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTCS-301A | Computer Architecture & Organ |
|-----------|-------------------------------|
|           |                               |

Mid-Sem End-Sem MM 40 60 100

# cture & Organization

L T P C 3 0 0 3

# **Course Objectives:**

This course offers a good understanding of the various functional units of a computer system and prepares the student to be in a position to design a basic computer system.

# Course Outcomes:

After undergoing this course students will be able

- I. To understand how computer hardware has evolved to meet the needs of multi-processing systems.
- II. To understand the design of control unit.
- III. To study the major components of a computer including CPU, memory, I/O and storage.
- IV. To understand design principles in instruction set design including RISC architectures
- V. To understand parallelism both in terms of a single processor and multiple processors.

# Unit I: Register Transfer and Micro operations

Register transfer language operations, arith metic micro operations, logic micro operations, shift micro operations, arithmetic logic shift unit. Design of a complete basic computer and it's working.

**Unit II: Basic Computer Organization and Design** Instruction codes, Computer registers, ComputerInstructions, Timingandcontrol, InstructionCycle, Memoryreferenceinstructions, Input/Output and Interrupt, Design of basic Computer, Design of Accumulator Logic.

# Unit III: Design of Control Unit

Control memory, design of control unit-micro programmed, hardwired, and their comparative study.

# Unit IV: Central Processing Unit

General Register Organization, Stack Organization, Instruction formats, Addressing Modes, Data transfer and manipulations, Program control, RISC and CISC architecture.

# Unit V: Input-Output Organization

Peripheral devices, I/O Interface, asynchronous data transfer, modes of transfer, priority interrupt, DMA,I/O processor, serial communication.

# Unit VI: Memory Organization

Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory, memory management hardware.

# Unit VII: Advanced concepts of Computer Architecture

Concept of pipeline, Arithmetic pipeline, Instruction, vector processors and array processors. Introduction to parallel processing, Inter processor communication & synchronization.

- 1. M. Moris Mano, Computer System Architecture, Pearson Education.
- 2. William Stallings, Computer Organisation and Architecture, Pearson Education.
- 3. David A Patterson, Computer Architecture, Pearson Education.
- 4. P. Pal Choudhri, Computer Organisation and Design, PHI.
- 5. J. P. Hayes, Computer System Architecture, Pearson Education.
- 6. Kai Hawang, Advanced Computer Architecture, Tata McGraw Hill.
- 7. Riess. Assembly Language and Computer Architecture and using C++ and JAVA, Cengage Learning.



Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTAM-302A |
|-----------|
|-----------|

# **Mathematics-III**

Mid-SemEnd-SemMM4060100

| L | Т | Р | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

### **Course Objectives:**

To teach computer based Engineering Mathematics to students. After this course the student will be able to solve complex computer oriented problems.

### **Course Outcomes:**

After undergoing this course students will be able

- I. Calculate the coefficients of both the complex and the real Fourier series for a variety functions, and to use Laplace transform to solve ordinary differential equations.
- II. Understand formation of Partial Differential Equations, linear Partial Differential Equations, and Homogeneous Partial Differential Equations with constant coefficients and Apply standard techniques of linear algebra, complex analysis and calculus.
- III. Solve the Laplace, heat and wave equations for a variety of boundary conditions in domains of simple geometry and with simple boundary conditions; the techniques available will include, separation of variables, Laplace and Fourier Transform methods.
- IV. Understand Gauss elimination method, gauss- Jordan method, Gauss- Seidel iteration method, Rayleigh's Power method for Eigen values and Eigenvectors and Solutions of Initial values problems using Eulers, modified Eulers method and Runge- kutta (upto fourth order) methods.
- V. Apply various probability distributions to solve practical problems and construct confidence intervals using sampling analysis and testing of hypothesis.

### **Unit I: Fourier series**

Periodic Functions, Euler's Formula. Even and oddFunctions, Half range expansions, Fourierseriesofdifferentwaveforms.

## Unit II: Linear Systems and Eigen-Values

Gauss-elimination method, Gauss-Jordan method, Jacobi's Method, Gauss-Seidel iteration method, Rayleigh's Power method for Eigen values and Eigen vectors

### **Unit III: Differential Equations**

Solutions of Initial values problems using Euler's, modified Euler's method and Runge-kutta (up to fourth order) methods.

## **Unit IV: Probability**

Mean, median, mode and standard deviation, Random variables. Uniform, normal, exponential, Poisson and binomial distributions, Conditional probability and Bayes theorem.

## Unit V: Sampling Distribution& testing of Hypothesis

Sampling, Distribution of means and variance, Chi- Square distribution, t-distribution, F- distribution. General concepts of hypothesis, Testing a statistical Hypothesis, One and two tailed tests, critical region, Confidence interval estimation. Single and two sample tests on proportion, mean and variance.

Deptt. of Computer Sci. & Engg.

- 1. E. Kreyszig, Advanced Engineering Mathematics, 5th Edition, Wiley Enstern 1985.
- 2. 2. P. E. Danko, A. G. Popov, T. Y. A. Kaznevnikova, Higher Mathematics in Problems and Exercise, Part 2, Mir Publishers, 1983.
- 3. Bali, N. P., A Text Book on Engineering Mathematics, Luxmi Pub., New Delhi.
- 4. S.C Gupta, V. Kapoor, "Fundamentals of Mathematical Statistics: A Modern Approach", S Chand & Sons educational Publishers, 10th Ed.
- 5. Grewal B.S, "Higher Engineering Mathematics 43rd Edition.



Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTCS-303A |
|-----------|
|-----------|

# **Digital Circuits & Logic Design**

| Mid-Sem | End-Sem | MM  |
|---------|---------|-----|
| 40      | 60      | 100 |

| 0 | 0 |   |   |  |
|---|---|---|---|--|
|   | L | Т | Р |  |

3 1

С

4

0

# **Course Objectives:**

Demonstrate the operation of simple digital gates, identify the symbols, develop the truth table for those gates; combine simple gates into more complex circuits; change binary, hexadecimal, octal numbers to their decimal equivalent an vice versa, demonstrate the operation of a flip-flop. Design counters and clear the concept of shift resisters. Study different types of memories and their applications. Convert digital into analog and vice versa.

### **Course Outcomes:**

After undergoing this course students will be able to

- I. Understand the significance and use of different number systems, weighted & non-weighted codes along with their conversions. Learn Boolean algebra& its laws.
- II. Minimize Boolean expressions using different techniques: Algebraic method, K- Map Technique and QM Methods, develop basic understanding of Logic gates and universal behavior of NAND/NOR gates.
- III. Obtain knowledge of combinational circuits and design procedure of various combinational logic circuits like Adder, Sub tractor, Comparator, MUX/DEMUX, Parity checker etc. Classification of memory devices and to develop understanding about their Organization.
- IV. Know about different sequential circuits like Flip-flops, Counters & their types. To design counters and know about working of shift registers.
- V. Know need of signal conversion, Study different types of signal convertors: ADC and DAC along with their working.

## **Unit I: Number Systems**

Binary, Octal, Decimal, And Hexadecimal. Numberbaseconversions,1's,2's,nth'scomplements, signedBinarynumbers.BinaryArithmetic,Binarycodes:WeightedBCD,Greycode,Excess3code, ASCII-conversion from onecodeto another.

## Unit II: Boolean Algebra

Boolean postulates and laws– De-Morgan's Theorem, Principle of Duality, Boolean expression– Boolean function, Minimization of Boolean expressions–

SumofProducts(SOP), ProductofSums(POS), Minterm, Maxterm, Canonical forms, Conversion between canoni calforms, Karnaughmap Minimization, Quine-McCluskey method-Don't care conditions.

## **Unit III: Logic GATES**

AND,OR,NOT,NAND, NOR ,Exclusive-ORand Exclusive-NOR, Implementations of Logic Functions using gates, NAND-NOR implementations, Study of logic families like RTL,DTL, DCTL,TTL, MOS, CMOS,ECL and their characteristics.

**Unit IV: Combinational Circuits** Design procedure– Adders, Subtractors, Serial adder/Sub tractor, Parallel adder/Subtractor Carry look ahead adder, BCD adder, Magitude Comparator, Multiplexer/ DE multiplexer, encoder/decoder, parity checker, code converters. Implementation of combinational logic using MUX.

**Unit V: Sequential Circuits** Flip flops SR, JK,T,D and Master slave, Excitation table, Edge triggering Level Triggering, Realization of one flipflop using other flip flops. Asynchronous/Ripple counters, Synchronous counters, Modulo-n counter, Ring Counters. Classification of sequential circuits- Moore and Mealy, Design of Synchronous counters: state diagram, Circuit implementation, Shift registers

# **Unit VI: Memory Devices:**

Classification of memories, RAM organization, Write operation, Read operation, Memory cycle, Static RAM Cell-Bipolar, RAM cell, MOSFET RAM cell, Dynamic RAM cell, ROM organization, PROM, EPROM, EEPROM, Field Programmable Gate Arrays(FPGA).

# Unit VII: Signal Conversions:

Analog& Digital signals, A/D and D/ A conversion techniques(Weightedtype,R-2RLaddertype, Counter Type,Dual Slope type, Successive Approximation type).

- 1. Morris Mano, Digital Design, Prentice Hall of India Pvt. Ltd
- 2. Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company
- 3. Limited, New Delhi, 2003.
- 4. R.P.Jain, Modern Digital Electronics, 3 ed., Tata McGraw–Hill publishing company limited, New Delhi, 2003.
- 5. Thomas L. Floyd, Digital Fundamentals, Pearson Education, Inc, New Delhi, 2003
- 6. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, Digital System -Principles and Applications, Pearson Education.
- 7. Ghosal ,Digital Electronics, Cengage Learning.

Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTCS-304A |                |     | Data Structures |   |   |   |   |
|-----------|----------------|-----|-----------------|---|---|---|---|
| Mid-Sem   | <b>End-Sem</b> | MM  |                 | L | Т | Р | С |
| 40        | 60             | 100 |                 | 3 | 1 | 0 | 4 |

### **Course Objectives:**

This course should provide the students with a fairly good concept of the fundamentals of different types of data structures and also the ways to implement them. Algorithm for solving problems like sorting, searching, insertion & deletion of data etc. related to data structures should also be discussed. After completion of this subject student should be able to choose an appropriate data structure for a particular problem.

### **Course Outcomes:**

After undergoing this course students will be able to

- Understand how various data structures are represented in memory and are used I. by algorithms.
- Understand the concept of time and space complexity and analyze them for II. different algorithms and also the ability to estimate programming time using Big O notation.
- III. Assess how the choice of data structures impact the performance of program.
- Design and employ appropriate data structures for solving computing IV. problems;
- Implement searching and sorting algorithms in solving larger problems. V.

### Unit I: Dynamic Memory Management

Understanding pointers, usage of pointers, arithmetic on pointers, memory allocation, memory management functions and operators, debugging pointers-dangling pointers, memory leaks, etc.

### **Unit II: Introduction to Data Types**

Concept of data type, definition and brief description of various data structures, data structures versus data types, operations on data structures, algorithm complexity, Big O notation.

### **Unit III: Arrays**

Linear and multi-dimensional arrays and their representation, operations on arrays, sparse matrices and their storage.

### Unit IV: Linked

Linear linked list, operations on linear linked list, doubly linked list, operations on doubly linked list, application of linked lists.

### **Unit V Stacks**

Sequential and linked representations, operations on stacks, application of stacks such as parenthesis checker, evaluation of post fix expressions, conversion from in fix to post fix representation, implementing recursive functions.

## Unit VI: Queues

Sequential representation of queue, linear queue, circular queue, operations on linear and circular queue, linked representation of a queue and operations on it, deque, priority queue, applications of queues.

# Unit VII: Trees

Basic terminology, sequential and linked representations of trees, traversing a binary tree using recursive and non-recursive procedures, inserting a node, deleting a node, brief introduction to threaded binary trees, AVL trees and B-trees.

# Unit VIII: Heaps

Representing a heap in memory, operations on heaps, and application of heap in implementing priority queue and heap sort algorithm.

## **Unit IX: Graphs**

Basic terminology, representation of graphs (adjacency matrix, adjacency list), traversal of a graph (breadth-first search and depth-first search), and applications of graphs.

## Unit X: Hashing & Hash Tables

Comparing direct address tables with hash tables, hash functions, concept of collision and its resolution using opened dressing and separate chaining, double hashing, rehashing.

# Unit XI: Searching & Sorting

Searching an element using linear search and binary search techniques, Sorting arrays using bubble sort, selection sort, insertion sort, quick sort, merge sort, heap sort, shell sort and radix sort, complexities of searching & sorting algorithms.

- 1. SartajSahni, Data Structures, Algorithms and Applications in C++, Tata McGraw Hill.
- 2. Tenenbaum, Augenstein, &Langsam, Data Structures using C and C++, Prentice Hall of India.
- 3. R. S. Salaria, Data Structures & Algorithms Using C++, Khanna Book Publishing Co. (P) Ltd.
- 4. Seymour Lipschutz, Data Structures, Schaum's Outline Series, Tata McGraw Hill
- 5. Kruse, Data Structures & Program Design, Prentice Hall of India.
- 6. Michael T. Goodrich, Roberto Tamassia, & David Mount, Data Structures and Algorithms in C++ (Wiley India)

Department of Computer Science & Engineering

[Batch 2015 onwards]

**BTCS-305A** 

# **Object Oriented Programming Using C++**

Mid-Sem End-Sem MM 40 60 100

С р 3

0

4

## **Course Objectives:**

To understand the basic concepts of object oriented programming languages and to learn the techniques of software development in C++.

### **Course Outcomes:**

After undergoing this course students will be able to

- Gain the basic knowledge on Object Oriented concepts and to demonstrate the differences I. between traditional imperative design and object-oriented design.
- Apply the concepts of class and object, data encapsulation, inheritance, operator overloading, II. Type Conversion and polymorphism to large-scale software
- Understand the basics of exception handling, Template concepts, Function templates, class III. templates, File streams, hierarchy of file stream classes, error handling during file operations
- IV. Declare and initializing pointers, accessing data through pointers, pointer arithmetic, memory allocation (static and dynamic), dynamic memory management using new and delete operators
- Design and develop object-oriented computer programs. Ability to implement features of V. object oriented programming to solve real world problems

# **Unit I: Object-Oriented Programming Concepts**

Introduction, comparison between procedural programming paradigm and object-oriented programming paradigm, basic concepts of object-oriented programming concepts of an object and a class, interface and implementation of a class, operations on objects, relationship among objects, abstraction, encapsulation, datahiding, inheritance, overloading, polymorphism, messaging.

## **Unit II: Standard Input/ Output**

Concept of streams, hierarchy of console stream classes, input /output using overloaded operators >> and << and member functions of i/o stream classes, formatting output, formatting using ios class functions and flags, formatting using manipulators.

Unit III: Classes and Objects: Specifying a class, creating class objects, accessing class members, access specifiers, static members, use of *const* keyword, friends of a class, empty classes, nested classes, local classes, abstract classes, container classes, bit fields and classes.

Unit IV: Pointers and Dynamic Memory Management Declaring and initializing pointers, accessing data through pointers, pointer arithmetic, memory allocation(static dynamic), dynamic memory management using new and delete operators, pointer to an object, this pointer pointer related problemsdangling/wild pointers, null pointer assignment, memory leak and allocation failures.

## **Unit V: Constructors and Destructors**

Need for constructors and destructors, copy constructor, dynamic constructors, explicit constructors, destructors, constructors and destructors with static members, initialize lists.

Deptt. of Computer Sci. & Engg.

# Unit VI: Operator Overloading and Type Conversion

Overloading operators, rules for overloading operators, overloading of various operators, type conversionbasic type to class type, class type to basic type, class type to another class type.

**Unit VII: Inheritance** Introduction, defining derived classes, forms of inheritance, ambiguity in multiple and multi path in heritance, virtual base class, objects licing, overriding member functions, object composition and delegation, order of execution of constructors and destructors

# Unit VIII: Virtual functions & Polymorphism

Concept of binding-early binding and late binding, virtual functions, pure virtual functions, abstract classes, virtual destructors.

**Unit IX: Exception Handling** Review of traditional error handling, basics of exception handling, exception handling mechanism, throwing mechanism, catching mechanism, ethrowing an exception, specifying exceptions.

# Unit X: Templates and Generic Programming

Templateconcepts, Function templates, class templates, illustrative examples.

# Unit XI: Files

Filestreams, hierarchyoffilestreamclasses, errorhandlingduringfileoperations, reading/writingoffiles, accessin g records randomly, updating files

# **Recommended Text and Reference Books**

- 1. Lafore R., Object Oriented Programming in C++, Waite Group.
- 2. E. Balagurusamy, Object Oriented Programming with C++, Tata McGraw Hill.
- 3. R. S. Salaria, Mastering Object-Oriented Programming with C++, Salaria Publishing House.

ZEPUR. P

- 4. BjarneStroustrup, The C++ Programming Language, Addison Wesley.
- 5. Herbert Schildt, The Complete Reference to C++ Language, McGraw Hill-Osborne.
- 6. Lippman F. B, C++ Primer, Addison Wesley.
- 7. Farrell- Object Oriented using C++, Cengage Learning.

Department of Computer Science & Engineering

[Batch 2015 onwards]

# BTCS306A

**Data Structures Lab** 

Mid-Sem End-Sem MM 30 20 50

# L T P C - - 3 1

# **Course Objectives:**

The objective of this course is to teach students various data structures and to explain them algorithms for performing various operations on these data structures.

# **Course Outcomes:**

After undergoing this course students will be able to

- I. Implement basic data structures such as arrays and linked list.
- II. Programs to demonstrate fundamental algorithmic problems including tree traversals, graph traversals and shortest path.
- III. Implement various searching and sorting algorithms.
- IV. Programs to demonstrate the implementation of various operations on stack and queue.

# List of Exp<mark>eriments</mark>

Write a menu driven program that implements following operations (using separate functions) on a linear array:
 Insert a new element at end as well as at a given position
 Delete an element from a given whose value is given or whose position is given
 To find the location of a given element

To display the elements of the linear array.

 Write a menu driven program that maintains a linear linked list whose elements are stored in on ascending order and implements the following operations (using separate functions): Insert a new element Delete an existing element Search an element

Display all the elements

- 3. Write a program to demonstrate the use of stack (implemented using linear array) in converting arithmetic expression from infix notation to postfix notation.
- 4. Program to demonstrate the use of stack (implemented using linear linked lists) in evaluating arithmetic expression in postfix notation.
- 5. Program to demonstration the implementation of various operations on a linear queue represented using a linear array.
- 6. Program to demonstration the implementation of various operations on a circular queue represented using a linear array.
- 7. Program to demonstration the implementation of various operations on a queue represented Using a linear linked list (linked queue).

- 8. Program to illustrate the implementation of different operations on a binary search tree.
- 9. Program to illustrate the traversal of graph using breadth-first search.
- 10. Program to illustrate the traversal of graph using depth-first search.
- 11. Program to sort an array of integers in ascending order using bubble sort.
- 12. Program to sort an array of integers in ascending order using selection sort.
- 13. Program to sort an array of integers in ascending order using insertion sort.
- 14. Program to sort an array of integers in ascending order using radix sort.
- 15. Program to sort an array of integers in ascending order using merge sort.
- 16. Program to sort an array of integers in ascending order using quick sort.
- 17. Program to sort an array of integers in ascending order using heap sort.
- 18. Program to sort an array of integers in ascending order using shell sort.
- 19. Program to demonstrate the use of linear search to search a given element in an array.
- 20. Program to demonstrate the use of binary search to search a given element in a sorted array in ascending order.



Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTCS-308A |
|-----------|
|           |

# **Digital Circuits & Logic Design Lab**

Mid-SemEnd-SemMM302050

### 

С

1

2

## **Course Objectives:**

The objectives of this course is to Introduce the concept of digital and binary systems and to be able to design and analyze combinational logic circuits and be able to design and analyze sequential logic circuits.

## **Course Outcomes:**

After undergoing this course students will be able to

- I. Develop basic understanding of Logic gates and universal behaviour of NAND/NOR gates.
- II. Obtain knowledge of combinational circuits and design procedure of various combinational logic circuits
- III. Obtain knowledge of different Flip-flops, their working and Truth Table Verification.
- IV. Obtain knowledge of Synchronous and Asynchronous Counters and their heir working.
- V. Study different types of ADC and DAC along with their working.

# List of Experiments

- 1. Study of Logic Gates: Truth-table verification of OR, AND, NOT, XOR, NAND and NOR gates; Realization of OR, AND, NOT and XOR functions using universal gates.
- 2. Half Adder / Full Adder: Realization using basic and XOR gates.
- 3. Half Subtractor / Full Subtractor: Realization using NAND gates.
- 4. 4-Bit Binary-to-Gray & Gray-to-Binary Code Converter: Realization using XOR gates.
- 5. 4-Bit and 8-Bit Comparator: Implementation using IC7485 magnitude comparator chips.
- 6. Multiplexer: Truth-table verification and realization of half adder and Full adder using IC74153 chip.
- 7. DE multiplexer: Truth-table verification and realization of half subtractor and Full subtractor using IC74139 chip.
- 8. Flip Flops: Truth-table verification of JK Master Slave FF, T-type and D-type FF using IC7476 chip.
- 9. Asynchronous Counter: Realization of 4-bit up counter and Mod-N counter using IC7490 & IC7493 chip.
- Synchronous Counter: Realization of 4-bit up/down counter and Mod-N counter using IC74192 & IC74193 chip.
- 11. Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO & Shift left operations using IC7495 chip.
- 12. DAC Operation: Study of 8-bit DAC (IC 08/0800 chip), obtain staircase waveform using IC7493 chip.
- 13. ADC Operations: Study of 8-bit ADC.

Deptt. of Computer Sci. & Engg.

Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTO     | CS-309A | L  | <b>Object Oriented Programming Using</b> | C++ | - La | ıb |
|---------|---------|----|------------------------------------------|-----|------|----|
| Mid-Sem | End-Sem | MM | L                                        | Т   | Р    | С  |
| 30      | 20      | 50 | -                                        | -   | 3    | 1  |

### **Course Objectives:**

The objectives of this course is to familiarize the students with language environment and to implement various concepts related to language.

### **Course Outcomes:**

After undergoing this course students will be able to

- I. Able to apply an object oriented approach to programming and identify potential benefits of object-oriented programming over other approaches
- II. Able to reuse the code(Inheritance) and write the classes which work like built-in types(Integer, Float, Character)
- III. Able to design applications which are easier to debug, maintain and extend.
- IV. Able to apply object-oriented concepts (inheritance, data abstraction, encapsulation, operator overloading and polymorphism etc) in real world applications.
- V. Able to design small level project using object oriented programming concepts(Class template, file stream, error handling)

# List of Experiments

- 1. [Classes and Objects] Write a program that uses a class where the member functions are defined inside a class.
- 2. [Classes and Objects] Write a program that uses a class where the member functions are defined outside a class.
- 3. [Classes and Objects] Write a program to demonstrate the use of static data members.
- 4. [Classes and Objects] Write a program to demonstrate the use of const data members.
- 5. [Constructors and Destructors] Write a program to demonstrate the use of zero argument and parameterized constructors.
- 6. [Constructors and Destructors] Write a program to demonstrate the use of dynamic constructor.
- 7. [Constructors and Destructors] Write a program to demonstrate the use of explicit constructor.
- 8. [Initializer Lists] Write a program to demonstrate the use of initializer list.
- 9. [Operator Overloading] Write a program to demonstrate the overloading of increment and decrement operators.
- 10. [Operator Overloading] Write a program to demonstrate the overloading of binary arithmetic operators.
- 11. [Operator Overloading] Write a program to demonstrate the overloading of memory management operators.
- 12. [Typecasting] Write a program to demonstrate the typecasting of basic type to class type.
- 13. [Typecasting] Write a program to demonstrate the typecasting of class type to basic type.

Deptt. of Computer Sci. & Engg.

- 14. [Typecasting] Write a program to demonstrate the typecasting of class type to class type.
- 15. [Inheritance] Write a program to demonstrate the multilevel inheritance.
- 16. [Inheritance] Write a program to demonstrate the multiple inheritance.
- 17. [Inheritance] Write a program to demonstrate the virtual derivation of a class.
- 18. [Polymorphism] Write a program to demonstrate the runtime polymorphism.
- 19. [Exception Handling] Write a program to demonstrate the exception handling.
- 20. [Templates and Generic Programming] Write a program to demonstrate the use of function template.
- 21. [Templates and Generic Programming] Write a program to demonstrate the use of class template.
- 22. [File Handling] Write a program to copy the contents of a file to another file byte by byte. The name of the source file and destination file should be taken as command-line arguments
- 23. [File Handling] Write a program to demonstrate the reading and writing of mixed type of data.
- 24. [File Handling] Write a program to demonstrate the reading and writing of objects.



# Syllabus of 4<sup>th</sup> Semester CSE (Scheme 2015)

# Shaheed Bhagat Singh State Technical Campus, Ferozepur

Department of Computer Science & Engineering

[Batch 2015 onwards]

| BTCS-401A     |               |           |          | ( | Operat | ting Sys | stem |        |        |        |        |
|---------------|---------------|-----------|----------|---|--------|----------|------|--------|--------|--------|--------|
| Mid-Sem<br>40 | End-Sem<br>60 | MM<br>100 |          |   |        |          |      | L<br>3 | Т<br>1 | Р<br>0 | C<br>4 |
|               |               |           | $\wedge$ |   |        | $\land$  |      |        |        |        |        |

# Course

## **Objectives:**

This course should provide the students with good understanding of Operating System including its architecture and all its components. Good conceptions on all the subjects like processes, inter-process communication, semaphore, message passing, classical IPC problems, scheduling, memory management, file systems, security and protection mechanism, I/O hardware and software, deadlocks, etc. should be provided.

## **Course Outcomes:**

After undergoing this course students will be able to

- I. Identify the role of Operating System. To understand the design of control unit.
- II. Understanding CPU Scheduling, Synchronization, Deadlock Handling and Comparing CPU Scheduling Algorithms. Solve Deadlock Detection Problems
- III. Describe the role of paging, segmentation and virtual memory in operating systems. Generation of logical and physical addresses for problems related to memory management.
- IV. Defining I/O systems, Device Management Policies and Secondary Storage Structure and Evaluation of various Disk Scheduling Algorithms.
- V. Description of protection and security and also the Comparison of UNIX and Windows based OS.

## **Unit I: Introduction**

Introduction to Operating system, Role of Operating System as resource manager, function of kerne land shell, operating system structures, views of an operating system.

## **Unit II: Process Management**

CPU scheduling, Scheduling Algorithms, PCB, Process synchronization, Deadlocks, Prevention, Detection and Recovery

## **Unit III: Memory Management**

Overlays, Memory management policies, Fragmentation and its types, Partitioned memory managements, Paging, Segmentation, Need of Virtual memories, Page replacement Algorithms, Concept of Thrashing.

## **Unit IV: Device Management**

I/O system and secondary storage structure, Device management policies, Role of I/O traffic controller, scheduler.

# Unit V: File Management

File System Architecture, Layered Architecture, Physical and Logical File Systems, Protection and Security:

Unit VI:Brief study to multiprocessor and distributed operating Systems.

# Unit VII: Case Studies

LINUX / UNIX Operating System and Windows based operating systems. Recent trends in Operating system.

- 1. A Silberschatz and Peter B. Galvin, "Operating System Concepts" Addison Wesley Publishing Company
- 2. Dhamdhere, —Systems Programming & Operating Systems' Tata McGraw Hill
- 3. Gary Nutt, "Operating Systems Concepts", Pearson Education Ltd. 3 rd Edition
- 4. Operating System by Madnick Donovan CT
- 5. Operating System by Stallings
- 6. Ida M.Flynn Understanding Operating Systems -, Cengage Learning



Department of Computer Science & Engineering

[Batch 2015 onwards]

# **Discrete Structures**

Mid-SemEnd-SemMM4060100

L T P C 3 1 0 4

# Course

## **Objectives:**

The objective of this course is to provide the necessary back ground of discrete structures with particular reference to the relationships between discrete structures and their data structure counterparts including algorithm development.

# **Course Outcomes:**

After undergoing this course students will be able to

- I. Understand the necessary back ground of discrete structures with particular reference to the relationships between discrete structures and their data structure counterparts including algorithm development and use logical notation to define and reason about fundamental mathematical concepts such as sets, relations, functions, Hashing functions and integers.
- II. Model, analyse and apply computational processes using analytic and combinatorial methods such as permutations and combinations and understand Recurrence relations, generating functions and applications.
- III. Understand elementary properties of modular arithmetic and explain their applications in Computer Science and apply graph theory models of data structures, trees to solve computer science problems.
- IV. Remember elementary mathematical arguments, logic and identify fallacious reasoning and understand concepts of Boolean algebra.
- V. Understand and apply principles of abstract algebra viz., group, ring and field.

# Unit I: Sets, relations and functions

Introduction, Combination of Sets, ordered pairs, proofs of general identities of sets, relations, operations on relations, properties of relations and functions, Hashing Functions, equivalence relations, compatibility relations, and partial order relations.

## Unit II: Rings and Boolean algebra

Rings, Subrings, morphism of rings ideals and quotient rings. Euclidean domains Integral domains and fields Boolean Algebra direct product morphisms Boolean sub-algebra Boolean Rings Application of Boolean algebra (Logic Implications, Logic Gates, Karnaugh- map).

# **Unit III: Combinatorial Mathematics**

Basic counting principles Permutations and combinations Inclusion and Exclusion Principle Recurrence relations, Generating Function, Application.

# **Unit IV: Monoids and Groups**

Groups Semigroups and monoids Cyclic semi graphs and sub monoids, Subgroups and Cosets. Congruence relations on semigroups. Morphisms. Normal subgroups. Dihedral groups.

# Unit V: Graph Theory

Graph- Directed and undirected, Eulerian chains and cycles, Hamiltonian chains and cycles Trees, Chromatic number Connectivity, Graph coloring, Plane and connected graphs, Isomorphism and Homomorphism. Applications.

- 1. Discrete Mathematics (Schaum series) by Lipschutz (McGraw Hill).
- 2. Applied Discrete Structures for Computer Science by Alan Doerr and Kenneth Levarseur.
- 3. Discrete Mathematics by N Ch SN Iyengar, VM Chandrasekaran.
- 4. Discrete Mathematics and Graph Theory(Cengage Learning) by Sartha
- 5. Discrete Mathematics and its Applications. Kenneth H Rosen.(McGraw Hill)
- 6. Elements of discrete mathematics. C L Liu (McGraw Hill)



Department of Computer Science & Engineering

[Batch 2015 onwards]

| BT      | CS-403A | L   | <b>Computer Network-I</b> |   |   |   |   |
|---------|---------|-----|---------------------------|---|---|---|---|
| Mid-Sem | End-Sem | MM  |                           | L | Т | Р | 0 |
| 40      | 60      | 100 |                           | 3 | 1 | 0 | 4 |
|         |         |     |                           |   |   |   |   |

## **Course Objectives:**

This course provides knowledge about computer network related hardware and software using a layered architecture.

### **Course Outcomes:**

After undergoing this course students will be able

- I. To study, analyze and understand the terminologies involved in networking by exploring insight to layers, interface, protocol, service, type of networks, hardware technologies used, signals and Models: OSI and TCP/IP.
- II. To explain and analyze the preparation and transmission of Data, understand the protocols and procedures of flow control, error and access control.
- III. To interpret the concept of IPv4 addressing and subnetting, subsequently applying the same for subnet design as per requirement of an enterprise.
- IV. To study routing, congestion, connection establishment, connection termination and Crash recovery protocols.
- V. To identify and study the protocols that are involved in web access, file sharing, name.

# Unit I: Introduction to Computer Networks

Data Communication System and its components, Data Flow, Computer network and its goals, Types of computer networks: LAN, MAN, WAN, Wireless and wired networks, broadcast and point to point networks, Network topologies, Network software: concept of layers, protocols, interfaces and services, ISO-OSI reference model, TCP/IP reference model.

## Unit II: Physical Layer

Concept of Analog& Digital Signal, Bandwidth, Transmission Impairments: Attenuation, Distortion, Noise, Data rate limits : Nyquist formula, Shannon Formula, Multiplexing : Frequency Division, Time Division, Wavelength Division, Introduction to Transmission Media : Twisted pair, Coaxial cable, Fiber optics, Wireless transmission (radio, microwave, infrared), Switching: Circuit Switching, Message Switching, Packet Switching & their comparisons.

## Unit III: Data Link Layer

Design issues, Framing, Error detection and correction codes: checksum, CRC, hamming code, Data link protocols for noisy and noiseless channels, Sliding Window Protocols: Stop & Wait ARQ, Go-back-N ARQ, Selective repeat ARQ, Data link protocols: HDLC and PPP.

# Unit IV: Medium Access Sub-Layer

Static and dynamic channel allocation, Random Access: ALOHA, CSMA protocols, Controlled Access: Polling, Token Passing, IEEE 802.3 frame format, Ethernet cabling, Manchester encoding, collision detection in 802.3, Binary exponential back off algorithm.

# Unit V: Network Layer

Design issues, IPv4 classful and classless addressing, subnetting, Routing algorithms: distance vector and link state routing, Congestion control: Principles of Congestion Control, Congestion prevention policies, Leaky bucket and token bucket algorithms

## Unit VI: Transport Layer

Elements of transport protocols: addressing, connection establishment and release, flow control and buffering, multiplexing and de-multiplexing, crash recovery, introduction to TCP/UDP protocols and their comparison.

# **Unit VII: Application Layer**

World Wide Web (WWW), Domain Name System (DNS), E-mail, File Transfer Protocol (FTP), Introduction to Network security

- 1. Computer Networks, 4 th Edition, Pearson Education by Andrew S. Tanenbaum
- 2. Data Communication & Networking, 4th Edition, Tata McGraw Hill. By Behrouz A. Forouzan.
- 3. Computer Networking, 3 rd Edition, Pearson Education by James F. Kurose and Keith W. Ross
- 4. Internetworking with TCP/IP, Volume-I, Prentice Hall, India by Douglas E. Comer.
- 5. Guide to Networking Essentials, 5 th Edition, Cengage Learning by Greg Tomsho,
- 6. Handbook of Networking, Cengage Learning by Michael W. Graves.



Department of Computer Science & Engineering

[Batch 2015 onwards]

BTCS-404A

# Microprocessor and Assembly Language Programming

Mid-SemEnd-SemMM4060100

Programming L T P 3 1 0

С

4

# **Course Objectives:**

The course is intended to give students good understanding of internal architectural details and functioning of microprocessors.

## **Course Outcomes:**

# After undergoing this course students will be able to

- I. Draw a block diagram and pin diagram of 8085 microprocessors, 8086 microprocessors. Discuss instruction cycle (i.e., fetch/decode/execute) and relate the instruction cycle to what actions occur for various instruction types using a block diagram of a microprocessor.
- II. Explain basic binary operations, buses, registers, ALU, Timing controls, flags, addressing modes and interrupt control that interconnect with each other.
- III. Perform the programs using the various addressing modes and data transfer instructions of the 8085 microprocessor and run their program on the training boards
- IV. Design timing diagrams, analyse the different data transfer modes, 8251 I/O processor and peripheral interfacing of 8255.
- V. Evaluate the real-world control problems such as traffic light signal, stepper motor controller, temperature control, Motorola 68000 and all Pentium and keyboard 7 segment display.

# Unit I: Introduction

Introduction to Microprocessors, history, classification, recent microprocessors.

## Unit II: Microprocessor Architecture

8085 microprocessor Architecture. Bus structure, I/O, Memory& Instruction execution sequence & Data Flow, Instruction cycle. System buses, concept of address Bus, Data Bus & Control Bus, Synchronous & Asynchronous buses.

## Unit III: I/O memory interface

Data transfer modes: Programmable, interrupt initiated and DMA. Serial& parallel interface, Detail study of 8251 I/O Processor & 8255 programmable peripheral interfaces.

## Unit IV: Instruction set & Assembly Languages Programming

Introduction, instruction & data formats, addressing modes, status flags, 8085 instructions, Data transfer operations, Arithmetic operations, Logical operations, Branch operations.

# Unit V: Case structure & Microprocessor application

Interfacing of keyboards and seven segment LED display, Microprocessor controlled temperature system (MCTS), Study of traffic light system, stepper motor controller, Microprocessor based microcomputers.

## Unit VI: Basic architecture of higher order microprocessors

Basic introduction to 8086 family, Motorola 68000, Pentium processors.

- 1. Ramesh Gaonkar, "8085 Microprocessor ",PHI Publications.
- 2. Daniel Tabak, "Advanced Microprocessors", McGraw- Hill, Inc., Second Edition 1995.
- 3. Douglas V. Hall, "Microprocessors and Interfacing: Programming and Hardware", Tata McGraw Hill Edition, 1986.
- 4. Charles M.Gilmore," Microprocessors: Principles and Applications", McGraw Hill.
- 5. Ayala Kenneth, "The 8086 Microprocessor Programming and Interfacing", Cengage Learning
- 6. Handbook of Networking, Cengage Learning by Michael W. Graves.



Department of Computer Science & Engineering

[Batch 2015 onwards]

| BT            | CS-405A       | L         | System Programming |        |        |        |        |
|---------------|---------------|-----------|--------------------|--------|--------|--------|--------|
| Mid-Sem<br>40 | End-Sem<br>60 | MM<br>100 |                    | L<br>3 | Т<br>1 | Р<br>0 | С<br>4 |
| Course Of     | oiectives:    |           |                    |        |        |        |        |

This course provides knowledge to design various system programs. Although not the primary focus of this course, instruction shall be done within the context of C/C++ and Linux/Unix.

### **Course Outcomes:**

After undergoing this course students will be able to

- I. To identify the role of different types of software in system programming.
- II. To understand and compare single pass and two pass assembler. Show the use of SYMTAB and OPTAB.
- III. To understand the design of macro processor. USE LEX and YACC
- tools. IV. To identify the compiler phases. Construct small/part of compiler.
- V. To understand and compare various types of editors, linkers and loaders.

# Unit I: Introduction

Introduction to system programming and different types of system programs –editors, assemblers, macroprocessors, compilers, linkers, loader, debuggers.

### Unit II: Assemblers

Description of single pass and two pass assemblers, use of data structures like OPTAB and SYMTAB, etc.

# Unit III: Microprocessors

Description of macros, macro expansion, conditional and recursive macro expansion.

## **Unit IV: Compilers**

Various phases of compiler – lexical, syntax and semantic analysis, intermediate code generation, code optimization techniques, code generation, Case study : LEX and YACC

## **Unit V: Loaders**

Concept of linking, different linking schemes, concept of loading and various loading schemes.

## **Unit VI: Editors**

Line editor, full screen editor and multi window editor, Case study MS-Word, DOS Editor and vi editor.

# Unit VII: Debuggers

Description of various debugging techniques

- 1. Donovan J.J., "Systems Programming", New York, Mc-Graw Hill, 1972.
- 2. Dhamdhere, D.M., "Introduction to Systems Software", Tata Mc-Graw Hill, 1996.
- 3. Aho A.V. and J.D. Ullman ,"Principles of compiler Design" Addison Wesley/ Narosa 1985.
- 4. Kenneth C. Louden," Compiler Construction", Cengage Learning.

Department of Computer Science & Engineering

[Batch 2015 onwards]

# **Operating System Lab**

Mid-SemEnd-SemMM302050

L T P C - - 2 1

## **Course Objectives:**

To make students able to implement CPU scheduling algorithms and Bankers algorithm used for deadlock avoidance and prevention. Students will also be able to implement page replacement and memory management algorithms.

### **Course Outcomes:**

After undergoing this course students will be able to

- I. Perform Installation process of various operating systems.
- II. Demonstrate virtualization, installation of virtual machine software and installation of operating systems on virtual machines.
- III. Ability to create, view file directories and process related commands in linux.
- IV. Understand the basics of shell programming.

## List of Experiments

- 1. Installation Process of various operating systems
- 2. Virtualization, Installation of Virtual Machine Software and installation of Operating System on Virtual Machine
- 3. Commands for files & directories: cd, ls, cp, md, rm, mkdir, rmdir. Creating and viewing files using cat. File comparisons. Disk related commands: checking disk free spaces. Processes in linux, connecting processes with pipes, background processing, managing multiple processes. Manual help. Background process: changing process priority, scheduling of processes at command, batch commands, kill, ps, who, sleep. Printing commands, grep, fgrep, find, sort, cal, banner, touch, file. File related commands ws, sat, cut, grep.
- 4. Shell Programming: Basic of shell programming, various types of shell, Shell Programming in bash, conditional & looping statement, case statements, parameter passing and arguments, shell variables, shell keywords, creating shell programs for automate system tasks, report printing management policies, Role of I/O traffic controller, scheduler

Department of Computer Science & Engineering

[Batch 2015 onwards]

# **Computer Network-I Lab**

Mid-SemEnd-SemMM302050

L T P C - - 2 1

## **Course Objectives:**

To make students aware about various types of cables used in guided media like coaxial cable, optical fiber cable, twisted pair cables and its categories. To understand the working of LAN Card, Hub, TELNET and to understand the working difference between straight cable and cross over cable. To be able to analyze different protocols used for packet communication like ALOHA Protocol.

# **Course Outcomes:**

After undergoing this course students will be able to

- I. To understand components of desktop, laptop and write latest specifications of desktop and laptop.
- II. To familiarize with various transmission media and prepare straight and cross cables using crimping tool and connectors.
- III. To have an exposure of network components devices and implement various topologies such as Ring, Bus, Star etc. physically using trainer kit.
- IV. To configure TCP/IP protocol in Windows, Linux and implement resource sharing.
- V. To perform subnet planning as per requirements of an enterprise and implement the same with proper testing.

## List Of Experiments:

- 1. Write specifications of latest desktops and laptops.
- 2. Familiarization with Networking Components and devices: LAN Adapters, Hubs, Switches, Routers etc.
- 3. Familiarization with Transmission media and Tools: Co-axial cable, UTP Cable, Crimping Tool, Connectors etc.
- 4. Preparing straight and cross cables.
- 5. Study of various LAN topologies and their creation using network devices, cables and computers.
- 6. Configuration of TCP/IP Protocols in Windows and Linux.
- 7. Implementation of file and printer sharing.
- 8. Designing and implementing Class A, B, C Networks
- 9. Subnet planning and its implementation
- 10. Installation of ftp server and client

Department of Computer Science & Engineering

[Batch 2015 onwards]

BTCS-408A

Microprocessor and Assembly Language Programming Lab

Р

2

L

Т

С

1

Mid-SemEnd-SemMM302050

## **Course Objectives:**

This course provide practical hands-on experience with microprocessor applications and interfacing techniques. Understand 8085 microprocessor kit, knowledge of 8085 instruction set and ability to utilize it in assembly language programming. Understand real mode Memory addressing and ability to interface various devices to the microprocessor.

## **Course Outcomes:**

After undergoing this course students will be able to

- I. Identify the basic element and functions of microprocessor.
- II. Describe the architecture of microprocessor and its peripheral devices.
- III. Demonstrate fundamental understanding on the operation between the microprocessor.
- IV. Demonstrate fundamental understanding on the operation interfacing devices.
- V. Complete the experiments in laboratory and present the technical report.

# List Of Experiments:

- 1. Introduction to 8085 kit.
- 2. Addition of two 8 bit numbers, sum 8 bit.
- 3. Subtraction of two 8 bit numbers.
- 4. Find 1's complement of 8 bit number.
- 5. Find 2's complement of 8 bit number.
- 6. Shift an 8 bit no. by one bit.
- 7. Find Largest of two 8 bit numbers.
- 8. Find Largest among an array of ten numbers (8 bit).
- 9. Sum of series of 8 bit numbers.
- 10. Introduction to 8086 kit.
- 11. Addition of two 16 bit numbers, sum 16 bit.
- 12. Subtraction of two 16 bit numbers.
- 13. Find 1's complement of 16 bit number.
- 14. Find 2's complement of 16 bit number

Department of Computer Science & Engineering

[Batch 2015 onwards]

| BT      | CS-409A | L  | System Programming Lab |   |   |   |
|---------|---------|----|------------------------|---|---|---|
| Mid-Sem | End-Sem | MM | L                      | Т | Р | С |
| 30      | 20      | 50 | -                      | - | 2 | 1 |

### **Course Objectives:**

The purpose of this course is to provide the students with an introduction to system-level programming. Although not the primary focus of this course, instruction shall be done within the context of C/C++ and Linux/Unix.

## **Course Outcomes:**

After undergoing this course students will be able to

- I. Create a menu driven interface for displaying contents of a file.
- II. To create symbol table for high level language.
- III. Implementation of single pass assembler on a limited set of instructions.
- IV. Exploring various features of debug command.
- v. Understand the use of LEX and YACC tools.

## List Of Experiments:

- 1. Create a menu driven interface for a) Displaying contents of a file page wise b) Counting vowels, characters, and lines in a file. c) Copying a file
- 2. Write a program to check balance parenthesis of a given program. Also generate the error report.

OZEPUR, PUA

- 3. Write a program to create symbol table for a given assembly language program.
- 4. Write a program to create symbol table for a given high-level language program.
- 5. Implementation of single pass assembler on a limited set of instructions.
- 6. Exploring various features of debug command.
- 7. Use of LAX and YACC tools.

# **Shaheed Bhagat Singh State Technical Campus**

Moga Road, Ferozepur-152004 (Punjab)

# Study Scheme for B-Tech. CSE (Batch 2015) Semester – 5

| Fifth               | Fifth Semester |                                          |                    |       |      |          |                               |                               |                |         |  |  |
|---------------------|----------------|------------------------------------------|--------------------|-------|------|----------|-------------------------------|-------------------------------|----------------|---------|--|--|
|                     |                |                                          | Schedu             | le of | Teac | ching    | Evalu                         | <b>Evaluation Scheme</b>      |                |         |  |  |
| Sr.<br>No.          | Course Code    | Course Name                              | CB <sub>*</sub> CS | L     | Т    | P        | Mid<br>Semester<br>Assessment | End<br>Semester<br>Assessment | Total<br>Marks | Credits |  |  |
| 1.                  | BTCS-501A      | Computer Networks-II                     | С                  | 3     | -    | -        | 40                            | 60                            | 100            | 3       |  |  |
| 2.                  | BTCS-502A      | Database Management<br>System            | С                  | 3     | 1    | -        | 40                            | 60                            | 100            | 4       |  |  |
| 3.                  | BTCS-503A      | Algorithm Analysis and Design            | С                  | 3     | 1    | -        | 40                            | 60                            | 100            | 4       |  |  |
| 4.                  | BTCS-504A      | Theory of Computation                    | С                  | 4     | 1    | -        | 40                            | 60                            | 100            | 5       |  |  |
| 5.                  | BTCS-DE1A      | Departmental Elective-I                  | Е                  | 3     | -    | -        | 40                            | 60                            | 100            | 3       |  |  |
| 6.                  | BTCS-505A      | Computer Networks –II<br>Laboratory      | С                  | -     | - \  | 2        | 30                            | 20                            | 50             | 1       |  |  |
| 7.                  | BTCS-506A      | DBMS Laboratory                          | 6                  | -     | -    | 3        | 30                            | 20                            | 50             | 1       |  |  |
| 8.                  | BTCS-507A      | Algorithm Analysis and Design laboratory | NGH                | -S    | TA   | 3        | 30                            | 20                            | 50             | 1       |  |  |
| 9.                  | BTCS-DE1A      | Departmental Elective-I<br>Laboratory    | E                  | -     |      | 2        | 30                            | 20                            | 50             | 1       |  |  |
| 10.                 | BTCS-508A      | Training-II *                            | Т                  | - 5   | ~    | <u>-</u> | 40                            | 60                            | 100            | 3       |  |  |
| 11.                 | BTHU-501A      | Professional Skills-III                  |                    | -     | - 2  | 2        | 30                            | 20                            | 50             | 1       |  |  |
|                     |                | Total                                    | 6                  | 16    | 3    | 12       | 390                           | 460                           | 850            | -       |  |  |
| Total Contact Hours |                |                                          |                    |       | 31   |          |                               | otal Credits                  |                | 27      |  |  |

\*CBCS: Choice Based Credit System C-Core; E-Elective; OE-Open Elective; T-Training; P-Project; PS-Professional Skills

\* The marks will be awarded on the bases of 06 weeks Training-II in Industry after 4<sup>nd</sup> semester.

# Semester – 6

| Sixth Semester              |             |                                       |           |                                      |    |   |                               |                               |                |         |  |
|-----------------------------|-------------|---------------------------------------|-----------|--------------------------------------|----|---|-------------------------------|-------------------------------|----------------|---------|--|
|                             |             | FER                                   | Schedu    | hedule of Teaching Evaluation Scheme |    |   |                               |                               |                |         |  |
| Sr.<br>No.                  | Course Code | Course Name                           | CBCS<br>* | L                                    | Т  | Р | Mid<br>Semester<br>Assessment | End<br>Semester<br>Assessment | Total<br>Marks | Credits |  |
| 1.                          | BTCS-601A   | Compiler Design                       | С         | 3                                    | 1  | - | 40                            | 60                            | 100            | 4       |  |
| 2.                          | BTCS-602A   | Computer Graphics                     | С         | 3                                    | 1  | - | 40                            | 60                            | 100            | 4       |  |
| 3.                          | BTCS-603A   | Software Engineering                  | С         | 3                                    | 1  | - | 40                            | 60                            | 100            | 4       |  |
| 4.                          | BTCS-604A   | Data Warehouse &<br>Mining            | С         | 3                                    | 1  | - | 40                            | 60                            | 100            | 4       |  |
| 5.                          | BTCS-DE2A   | Departmental Elective –II             | Е         | 3                                    | -  | - | 40                            | 60                            | 100            | 3       |  |
| 6.                          | BTCS-605A   | Computer Graphics<br>Laboratory       | С         | -                                    | -  | 2 | 30                            | 20                            | 50             | 1       |  |
| 7.                          | BTCS-606A   | Software Engineering<br>Laboratory    | С         | -                                    | -  | 2 | 30                            | 20                            | 50             | 1       |  |
| 8.                          | BTCS-607A   | Data Warehouse &<br>Mining Laboratory | С         | -                                    | -  | 2 | 30                            | 20                            | 50             | 1       |  |
| 9.                          | BTCS-608A   | Web and Open Source<br>Technologies   | С         | -                                    | -  | 3 | 30                            | 20                            | 50             | 1       |  |
| 10.                         | BTHU-601A   | Professional Skills-IV                |           | -                                    | -  | 2 | 30                            | 20                            | 50             | 1       |  |
| Total 15 4 11 350 400 750 - |             |                                       |           |                                      |    |   |                               |                               |                | -       |  |
| Total Contact Hours         |             |                                       |           |                                      | 30 |   | Το                            | 24                            |                |         |  |

# \*CBCS: Choice Based Credit System

C-Core; E-Elective; OE-Open Elective; T-Training; P-Project; PS-Professional Skills

# Shaheed Bhagat Singh State Technical Campus

Moga Road, Ferozepur-152004 (Punjab)

# Study Scheme for B-Tech. CSE (Batch 2015)

| Seve                                         | nth Semester | Se                                   | mes       | ter   | -7   |      |                               |                               |                |         |
|----------------------------------------------|--------------|--------------------------------------|-----------|-------|------|------|-------------------------------|-------------------------------|----------------|---------|
|                                              |              |                                      | Schedu    | le of | Teac | hing | Evalı                         |                               |                |         |
| Sr.<br>No.                                   | Course Code  | Course Name                          | CBCS<br>* | L     | Т    | Р    | Mid<br>Semester<br>Assessment | End<br>Semester<br>Assessment | Total<br>Marks | Credits |
| 1.                                           | BTCS-701A    | Object Oriented<br>Analysis & Design | С         | 3     | -    | -    | 40                            | 60                            | 100            | 3       |
| 2.                                           | BTCS -702A   | Minor Project                        | Р         | -     | -    | 8    | 40                            | 60                            | 100            | 4       |
| 3.                                           | BTCS-DE3A    | Departmental<br>Elective –III        | Е         | 3     | -    | -    | 40                            | 60                            | 100            | 3       |
| 4.                                           | BTCS-OE1A    | Open Elective-I                      | OE        | 3     | -    | -    | 40                            | 60                            | 100            | 3       |
| 5.                                           | BTCS-703A    | Training-III *                       | Т         | -     | -    | -    | 40                            | 60                            | 100            | 4       |
| Total                                        |              |                                      |           |       | -    | 8    | 200                           | 300                           | 500            | -       |
| Total Contact Hours     17     Total Credits |              |                                      |           |       |      |      |                               | 17                            |                |         |

# GH STATE

\*CBCS: Choice Based Credit System C-Core; E-Elective; OE-Open Elective; T-Training; P-Project; PS-Professional Skills

\* The marks will be awarded on the bases of 08 weeks Training-III in Industry after 6<sup>nd</sup> semester.

# Semester – 8

an for

| Eigh                       | th Semester | 1-15                         |        |       | 3   | K       |                  |              |                  |         |
|----------------------------|-------------|------------------------------|--------|-------|-----|---------|------------------|--------------|------------------|---------|
| Sn                         |             | S                            | Schedu | le of | Tea | ching 🚬 | <b>S</b> / Evalu | ation Scheme |                  |         |
| Sr.                        | Course      | Course Name                  | DCC    | 2     | X   | X       | Mid              | End          | Total            | Credits |
| INU                        | Code        | Course Maine                 | , DC2  | L     | T   | ~P      | Semester         | Semester     | Total<br>Morks   | Creuits |
| •                          |             |                              |        |       | -   |         | Assessment       | Assessment   | 1 <b>VIAI KS</b> |         |
| 1.                         | BTCS-801A   | Major Project                | BZE    | P     | JR, | 12      | 40               | 60           | 100              | 6       |
| 2.                         | BTCS-DE4A   | Departmental Elective-<br>IV | С      | 3     | -   |         | 40               | 60           | 100              | 3       |
| 3.                         | BTCS-OE2A   | Open Elective-II             | OE     | 3     | I   | -       | 40//             | 60           | 100              | 3       |
| Total                      |             |                              |        | 6     | -   | 12      | 120              | 180          | 300              | -       |
| <b>Total Contact Hours</b> |             |                              |        | 18    | ;   | Тс      | otal Credits     |              | 12               |         |

# \*CBCS: Choice Based Credit System C-Core; E-Elective; OE-Open Elective; T-Training; P-Project; PS-Professional Skills

| Training     | Duration                                       | Remarks                       |
|--------------|------------------------------------------------|-------------------------------|
| Training-I   | In house 4-weeks training during               | MOM of HODs meeting dated     |
|              | summer vacation after 2 <sup>nd</sup> semester | 17/05/2016 under chairmanship |
| Training-II  | In house/Indl. 6-weeks training                | of Director                   |
|              | during summer vacation after 4 <sup>th</sup>   |                               |
|              | semester                                       |                               |
| Training-III | In house/Indl. 8-weeks during                  |                               |
| -            | summer vacation after 6 <sup>th</sup> semester |                               |

| <b>Depar</b><br>1. | <b>tmental Electi</b><br>BTCS-511A :                            | <b>ve-I (BTCS-DE1A)</b><br>Java Programming                           | (5 <sup>th</sup> Semester)    |
|--------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
| 2.                 | BTCS-512A:                                                      | Network Programming                                                   |                               |
| 3.                 | BTCS-513A :                                                     | Linux Server Administration                                           |                               |
| 4.                 | BTCS-514A :                                                     | Python Programming                                                    |                               |
| <b>Depar</b><br>1. | <b>tmental Electi</b><br>BTCS-515A :                            | <b>ve-I Laboratory (BTCS-DE1A Lab)</b><br>Java Programming Laboratory | (5 <sup>th</sup> Semester)    |
| 2.                 | BTCS-516A :                                                     | Network Programming Laboratory                                        |                               |
| 3.                 | BTCS-517A :                                                     | Linux Server Administration Laboratory                                |                               |
| 4                  | BTCS-518A :                                                     | Python Programming Laboratory                                         |                               |
| <b>Depar</b><br>1. | <b>tmental Electi</b><br>BTCS-611A :                            | <b>ve-II (BTCS-DE2A)</b><br>Mobile Application Development            | (6 <sup>th</sup> Semester)    |
| 2.                 | BTCS-612A :                                                     | Cloud Computing                                                       |                               |
| 3.                 | BTCS-613A :                                                     | Information Security                                                  |                               |
| 4.                 | BTCS-614A :                                                     | Artificial Intelligence                                               | $\frown$                      |
| <b>Depar</b><br>1. | tmental Electi<br>BTCS-711A :                                   | ve-III (BTCS-DE3A) STATE<br>Agile Software Development                | (7 <sup>th</sup> Semester)    |
| 2.                 | BTCS-712A:                                                      | Parallel Architecture Computing                                       | 5                             |
| 3.                 | BTCS-713A :                                                     | Ethical Hacking                                                       | YE >                          |
| 4.                 | BTCS-714A :                                                     | Soft Computing                                                        |                               |
| 5.                 | BTCS-715A :                                                     | Business Intelligence                                                 |                               |
| <b>Depar</b><br>1. | <b>tmenta<mark>l Electi</mark><br/>BTCS-<mark>811A</mark> :</b> | ve-IV (BTCS-DE4A)<br>Building Enterprise Applications                 | (8 <sup>th</sup> Semester)    |
| 2.                 | BTCS-812A:                                                      | Software Architecture                                                 | 5/5                           |
| 3.                 | BTCS-813A :                                                     | Software Testing                                                      | 5131                          |
| 4.                 | BTCS-814A :                                                     | Information Theory                                                    | $\langle \mathcal{S} \rangle$ |
| Open               | Electives offer                                                 | ed by CSE department                                                  |                               |
| 1.                 | BICS-901A:                                                      | Essentials of II OZEPUR, PUN,                                         | JAD                           |
| 2.                 | BTCS-902A :                                                     | 11 Tools for Engineers                                                | The los                       |
| 3.                 | BTCS-903A :                                                     | Data Structures                                                       |                               |
| 4.                 | BTCS-904A :                                                     | Operating System                                                      | ~                             |

| Choice of CSE for | Choice of CSE for Open Electives            |  |  |  |
|-------------------|---------------------------------------------|--|--|--|
| BTCS-OE1A         | Open Electives for 7 <sup>th</sup> Semester |  |  |  |
|                   | Probability & Statistics                    |  |  |  |
|                   | Operation Research                          |  |  |  |
|                   | Optimization Techniques                     |  |  |  |
|                   | Numerical Methods                           |  |  |  |
| BTCS-OE2A         | Open Electives for 8 <sup>th</sup> Semester |  |  |  |
|                   | Human Resource Management                   |  |  |  |
|                   | Written and Oral Technical Communication    |  |  |  |
|                   | Research Methodology                        |  |  |  |
|                   | Technical Report Writing                    |  |  |  |



| BTCS-501A                                                                                                                                                                                                                                                                                     | Computer Networks-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mid-Sem End-Sem MM                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Course Objectives: This cou<br>prepares<br>based tee                                                                                                                                                                                                                                          | rse offers a good understanding of Computer network concepts and<br>the student to be in a position to use and design various network<br>chnologies for different applications.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Course Outcomes:<br>After undergoing this                                                                                                                                                                                                                                                     | course students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>Implement inter swi</li> <li>Implement various i</li> <li>Implement traffic fi</li> <li>Implement and understand</li> <li>Design and understand</li> </ol>                                                                                                                           | tch communication and VLANs.<br>couting protocols for IPv4 and IPv6.<br>Itering using ACL.<br>erstand adhoc networks.<br>and cellular system.<br>GH STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Introduction to Switchin<br>VLAN(normal/extended), Sp<br>configuration, verification and<br>Layer 2 and Layer 3 Ether cha<br>Routing Technologies: intro<br>OSPF (v1 and v2), EIGRP for<br>WAN Technologies: WAN<br>PPPoE, Internet VPN (DMV)<br>MLPPP, PPPoE<br>ACL : introduction Configure | Unit I         ng Technologies, Configuration, verify and troubleshooting of anning tree protocol and its types, types of ports (access and trunk), I troubleshooting of inter witch connectivity, DTP and VTP, STP Features, unnel, Mitigation techniques.         (6)         uction to routing protocols and their comparison, configure and verify IPv4 and IPv6.         (5)         Unit II         topology, WAN access connectivity- MPLS, Metro Ethernet, Broadband PN, site-to-site VPN, client VPN), configure, verify and troubleshooting of [6]         ution and troubleshooting ACL for traffic filtering |
| Adhoc networks: Features, architecture, Protocols: MAC                                                                                                                                                                                                                                        | Unit III<br>advantages and applications, Adhoc versus Cellular networks, Network<br>protocols, Routing protocols, Technologies. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Cellular Networks</b> : Evolution<br><b>Cellular System Design:</b><br>strategies, interference and system                                                                                                                                                                                 | Unit- IV<br>h, 1G, 2G, 2.5G,3G,4G-LTE<br>Introduction, Frequency reuse, channel assignment strategies, handoff<br>stem capacity, improving coverage and capacity in cellular systems.[6]                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Recommended Text and Ref                                                                                                                                                                                                                                                                      | ference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ol> <li>Todd Lammle, CCNA<br/>105, Exam 200-125, V</li> <li>Theodore S. Rappapo</li> <li>Mischa Schwartz, Mo</li> <li>C. Siva Ram Murthy,</li> <li>Wendell Odom, CCN<br/>Press.</li> </ol>                                                                                                   | A Routing and Switching Complete Study Guide: Exam 100-105, Exam 200-<br>Wiley India Pvt. Ltd.<br>rt, Wireless Communication: Principles and Practices , Pearson Education.<br>bile Wireless Communications Cambridge University Press.<br>B.S.Manoj, Ad Hoc Wireless Networks, Prentice Hall.<br>NA Routing and Switching ICND2 200-101 Official Cert Guide, CISCO                                                                                                                                                                                                                                                      |

BTCS-502A

# **Data Base Management System**

Mid-Sem End-Sem MM 40 60 100

| L | Т | Р | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

Course Objectives: This course offers a good understanding of database systems concepts and prepares the student to be in a position to use and design databases for different applications.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Describe DBMS architecture, physical and logical database designs, database modeling, relational, hierarchical and network models.
- 2. Understand and apply Relational Model in Database design, Structured query language (SQL) for database definition and database manipulation.
- 3. Understanding different transaction processing concepts and use different concurrency control techniques.
- 4. Understanding different types of databases such as object oriented and distributed databases.
- 5. To understand different types of database failures and techniques to recover from such failures.

# Unit I: Introduction to Database Systems:

File Systems Versus a DBMS, Advantages of a DBMS, Describing and Storing Data in a DBMS, Database System Architecture, DBMS Layers, Data independence. SQL: DDL, DML, DCL, Normalization: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF. [6]

# Unit-II: Data Models:

Relational Model, Network Model, Hierarchical Model, ER Model: Entities, Attributes and Entity Sets, Relationships and Relationship Sets, Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Database Design with the ER Model, ER to Relational Model Conversion, Integrity Constraints over Relations, Comparison of Models. Relational Algebra, Relational Calculus, [6] **Unit-III Transaction Processing and Concurrency Control:** 

Transaction Processing Concepts, ACID Properties, Concurrency Control Techniques: Two-phase Locking, Lock Management, Lost Update Problem, Inconsistent Read Problem, Read and Write Locks Timestamp Ordering, Multisession, Validation, Multiple Granularity Locking. [5]

# Unit-IV Distributed Databases:

Distributed Database Concepts, Advantages and Disadvantages, Types of Distributed Database Systems, Data Fragmentation, Replication and Allocation Techniques for Distributed Database Design, Five Level Schema Architecture, Query Processing, Concurrency Control and Recovery in Distributed Databases. [5]

# Unit-V Backup and Recovery:

Types of Database Failures, Types of Database Recovery, Recovery Techniques: Deferred Update,Immediate Update, Shadow Paging, Checkpoints, Buffer Management.[4]

### **Unit- VI Database Protection:**

Threats, Access Control Mechanisms, Discretionary Access Control, Grant and Revoke, Mandatory Access Control, Bell LaPadula Model, Role Based Security, Firewalls, Encryption and Digital Signatures.

[4]

- 1. Ramez Elmasri, Shamkant Navathe ,Fundamentals of Database Systems, Fifth Edition, Pearson Education, 2007.
- 2. C.J. Date, An Introduction to Database Systems, Eighth Edition, Pearson Education.
- 3. Alexis Leon, Mathews Leon, Database Management Systems, Leon Press.
- 4. S. K. Singh, Database Systems Concepts, Design and Applications, Pearson Education.
- 5. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Tata McGraw-Hill.
- 6. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, Tata McGrawHill.

# BTCS-503A

| Mid-Sem | End-Sem | MM  |
|---------|---------|-----|
| 40      | 60      | 100 |

# **Course Objectives:**

To learn the ability to distinguish between the tractability and intractability of a given computational problem. To be able to devise fast and practical algorithms for real-life problems using the algorithm design techniques and principles learned in this course.

**Algorithm Analysis and Design** 

С

4

Т

1

[3]

0

3

## **Course Outcomes:**

- After undergoing this course students will be able to
- 1. Understand and learn the basics of design and analysis of an algorithm.
- 2. Use the concept of Dynamic programming, Backtracking, Branch and Bound, Greedy algorithm to solve computing problems.
- 3. Ability to estimate programming time using Asymptotic notations.
- 4. Understanding the algorithms application in solving real life problems
- 5. Interpretation of the basics of the NP-completeness and analyse NP-complete by using polynomial time reductions

### **Unit I: Introduction**

What is an algorithm? Time and space complexity of an algorithm. Comparing the performance of different algorithms for the same problem. Different orders of growth. Asymptotic notation. Polynomial vs. Exponential running time. [5]

# Unit II: Basic Algorithm Design Techniques

Divide-and-conquer, greedy, randomization, and dynamic programming. Example problems and algorithms illustrating the use of these techniques. [4]

### Unit III: Graph Algorithms

Graph traversal: breadth-first search (BFS) and depth-first search (DFS). Applications of BFS and DFS. Topological sort. Shortest paths in graphs: Dijkstra and Bellman-Ford. Minimum spanning trees. [5]

### Unit IV: Sorting and searching

Binary search in an ordered array. Sorting algorithms such as Merge sort, Quick sort, Heap sort, Radix Sort, and Bubble sort with analysis of their running times. Lower bound on sorting. Median and order statistics. [5]

### Unit V: NP-completeness

Definition of class NP. NP-hard and NP-complete problems. 3SAT is NP-complete. Proving a problem to be NP-complete using polynomial-time reductions. Examples of NP-complete problems. [4]

### Unit VI: Coping with NP-completeness

Approximation algorithms for various complete problems.

# Unit VII: Advanced topics

Pattern matching algorithms: Knuth-Morris-Pratt algorithm. Algorithms in Computational Geometry:<br/>Convex hulls. Fast Fourier Transform (FFT) and its applications.[4]

- 1. Algorithm Design by J. Kleinberg and E. Tardos. Addison Wesley.
- 2. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
- 3. Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani.
- 4. Algorithm Design: Foundations, Analysis, and Internet Examples by Michael T. Goodrich and Roberto Tamassia.
- 5. The Design and Analysis of Computer Algorithms by A. V. Aho, J. E. Hopcroft, and J. D. Ullman.
- 6. The Art of Computer Programming, Volumes 1, 2, and 3, by Donald Knuth. Addison Wesley Longman

| BTC           | CS-504A                  |                              |                            | Theory                      | of Comp                    | outation      |              |              |           |             |
|---------------|--------------------------|------------------------------|----------------------------|-----------------------------|----------------------------|---------------|--------------|--------------|-----------|-------------|
| Mid-Sem<br>40 | End-Sem<br>60            | MM<br>100                    |                            |                             |                            |               | L<br>4       | Т<br>1       | Р<br>0    | C<br>5      |
| Course Ob     | jectives: To             | give the st                  | udents knowl               | edge of num                 | iber of areas              | in theoreti   | cal c        | omp          | uter      |             |
|               | Sc                       | cience and t                 | their intercon             | nections.                   |                            |               |              |              |           |             |
| Course Ou     | tcomes:<br>After und     | lergoing thi                 | s course stude             | ents will be a              | ble to                     |               |              |              |           |             |
|               | 1. Underst               | tanding of th                | ne basic kinds             | of finite auto              | omata's and the            | heir capabili | ties.        |              |           |             |
|               | 2. Determ                | ine the relat                | ion between re             | egular expres               | ssions, autom              | ata, languag  | ges ai       | nd gr        | amma      | r           |
|               | 3. Underst               | tanding of r                 | egular and cor             | us.<br>ntext-free lan       | guages. Lang               | guages and g  | grami        | nar v        | vith      |             |
|               | formal                   | mathematic                   | al methods, as             | well as the u               | use of formal              | languages a   | ind re       | educt        | ion in    |             |
|               | normal                   | forms.                       |                            | T                           |                            | ·             |              |              |           |             |
|               | 4. Design                | pusn down                    | automata and               | Turing maer                 | unes perform               | ing tasks of  | moa          | erate        |           |             |
|               |                          | anty.                        | SINGH                      | 151A7                       | ETA                        |               |              |              |           |             |
| Unit I: Bas   | ics of String            | s and Alpha                  | bets, Finite A             | utomata – D                 | FA, transitio              | n graphs, re  | gular        | lang         | uages     | ,           |
| non           | -deterministi            | c FA, equiy                  | alence of DFA              | A and NDFA                  |                            |               |              |              |           | [6]         |
| Unit II. Re   | oular oramm              | ars regular                  | expressions                | equivalence                 | hetween requ               | lar language  | e nr         | onert        | ties of   | •           |
| regu          | lar languages            | s, pumping                   | lemma.                     | equivalence                 | between regu               | iur iungunge  | ., pi        | open<br>[    | 6]        |             |
|               |                          |                              |                            |                             | 5                          | 12L           |              |              |           |             |
| Unit III: C   | ontext Free I            | Languages –                  | - Leftmost and             | l rightmost d               | erivation, pai             | rsing and an  | ıbıgu        | ıty,         | 51        |             |
| amo           | iguity in grai           |                              | inguages, non              | indi formis.                | 2                          | 12            |              | l            | 5]        |             |
| Unit IV: P    | ushdown Aut              | tomata – NI                  | OPDA, DPDA                 | , and context               | t free languag             | ges and PDA   | ١,           |              |           |             |
| com           | parison of de            | terministic                  | and non-deter              | ministic vers               | ions, closure              | properties,   | and          | L.           | 51        |             |
| Unit V: Tu    | ring Machine             | es, variation                | s, halting prol            | blem, PCP.                  | 5/0                        | $\mathcal{S}$ | >            | Į.           | 5]<br>[4] |             |
| Unit VI: C    | homsky Hier              | archy, LR (                  | k) Grammars,               | properties o                | f LR (k) gran              | nmars, Deci   | dabil        | ity          |           |             |
| and           | Recursively,             | Enumerabl                    | e Languages.               | PUR, P                      | UN .                       |               |              | [-           | 4]        |             |
| Recommen      | nded Text ar             | nd Reference                 | e Books                    |                             | AB                         | h.            |              |              |           |             |
| 1             | VID Mial                 | are and N                    | Chandrasakar               | on "Theory                  | of Computer                | Science"      | Third        | I Edi        | tion      | DLII        |
| 1.            | Learning Pr              | ivate Limite                 | enanurasekara<br>ed, 2011. | all, Theory                 | of Computer                | science,      | 1 11110      |              | uon, i    | гпі         |
| 2.            | John E. Hoj              | pcroft, Raje                 | ev Motwani, .              | Jeffrey D. U                | Ilman, "Intro              | duction to A  | Auto         | mata         | Theor     | ry",        |
| 2             | Languages a              | and Comput                   | ation, Pearsor             | n Education.                | ation? Case                | d Edition (   | <b>7</b>     | T            |           |             |
| 5.<br>4       | M. Sipser,<br>K V N Si   | introduction<br>unitha N     | Kalvani "For               | rmal Langua                 | ges and Auto               | omata Theo    | _enga<br>rv" | age 1<br>McG | raw-F     | ng.<br>Hill |
|               | 2010.                    |                              | iiiiyuiii, 10i             | innar Dunguu                | See and The                |               | -,           |              | 14.00 1   | ,           |
| 5.            | Stephen Wo               | olfram, "The                 | ory and Appl               | ications of C               | ellular Autor              | nata", World  | d Sci        | entifi       | ic, 198   | 36.         |
| 6.<br>7       | G.E. Revesz<br>M A Harri | z, "Introduc"<br>son "Introd | tion to Formal             | I Languages"<br>mal Languag | , Dover Publ<br>e Theory"∆ | ddison-Wes    | 91.<br>Jev   | 1978         |           |             |
| 8.            | R.K. Shukla              | a," Theory of                | of Computation             | n", Cengage                 | Learning.                  |               | y,           |              | •         |             |
|               |                          | -                            |                            |                             | -                          |               |              |              |           |             |

# **Departmental Elective-I (BTCS-DE1A)**

# BTCS-511A

# Java Programming

| Mid-Sem | End-Sem | MM  |
|---------|---------|-----|
| 40      | 60      | 100 |

# L

Т

0

3

Р

0

С

3

| <b>Course Objectives:</b> | This course will provide the knowledge of Java and prepare students to |
|---------------------------|------------------------------------------------------------------------|
|                           | be in a Position to write object oriented programs in Java.            |

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand the use of data types, variables and various control statements.
- 2. Understand methods, classes and inheritance and its use.
- 3. Understand the multithreaded programming
- 4. Understand development of JAVA applets Vs. applications.
- 5. Understand the connection control and database connectivity

Unit-I

**Overview of Java:** Object oriented programming, Two paradigms, abstraction, the three OOP principles, Java class libraries. [2]

**Date types, Variables and Arrays:** Integers, floating-point types, characters, Boolean, Iterates, Variable, Data types and casting, automatic type promotion in expressions, arrays. [3]

**Operators and Control Statements:** Arithmetic operators, bit wise operators, relational operators, Boolean logical operators, the ? Operator, operator precedence, Java's selection statements, iteration statements, jump statements. [4]

### Unit-II

Introduction to Classes: Class fundamentals, declaring object reference variable, Introducing methods, method, constructors, this keyword, garbage collection, the finalize () method. [3]

Methods and Classes: Overloading methods, using objects as parameters, recursion. [2]

**Inheritance:** Inheritance basics, using super, method overriding, dynamic method dispatch, using abstract Classes, Using final with inheritance, Package and Interfaces, Package access protection, importing packages. [3]

### Unit-III

**Exception Handling:** Exception handling fundamentals, Exception types, Uncaught Exceptions Using try and catch, multiple catch clauses, nested try statements, throw, finally Java's built-in exceptions, creating your own exception sub classes, using exceptions. [4]

**Multithreaded Programming:** The Java thread model, the main thread, creating thread, creating multiple threads, using is alive and join, Thread priorities, synchronization, Inter thread communications, suspending resuming and stopping threads. [4]

**Unit-IV** 

**String Handling:** The string constructors, string length, special string operations, character extraction, string comparison, searching string, modifying string, data conversion, changing the case of characters, string buffer. [3]

**I/O and Applets:** I/O Basics, Reading Console Input, Writing Console Output, Reading and Writing Files, Applet Fundamentals, Applet Architecture, The HTML Applet tag, passing parameters to Applets. [3]

### Unit-V

**Networking:** Networking basics, Java and the Net, TCP/IP Client Sockets URL, URL Connection, TCP/IP Server Sockets, Database connectivity. [3]

- 1 Herbert Schildt, The Complete Reference Java2, McGraw-Hill.
- 2 Joyce Farrell, Java for Beginners, Cengage Learning.
- 3 Deitel and Deitel, Java: How to Program, 6th Edition, Pearson Education.
- 4 James Edward Keogh, Jim Keogh, J2EE: The complete Reference, McGrawHill
- 5 Khalid A. Mughal, Torill Hamre, Rolf W. Rasmussen, Java Actually, Cengage Learning.
- 6 Shirish Chavan, Java for Beginners, 2nd Edition, Shroff Publishers.



L

3

Т

0

[81

Р

0

С

3

| BTC           | CS-512A       |            | <b>Network Programming</b>                    |
|---------------|---------------|------------|-----------------------------------------------|
| Mid-Sem<br>40 | End-Sem<br>60 | MM<br>100  |                                               |
| Course Ob     | viectives: To | familiariz | e students with advanced concents of networks |

# Course Objectives: To familiarize students with advanced concepts of networks, network programming in UNIX environment.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand TCP/IP protocol.
- 2. Understand environment variables.
- 3. Understand and implement IPC under UNIX environment.
- 4. Understand and implement socket programming.

# Unit I

OSI model, client server model, TCP/IP protocols, Introduction to Unix; Process, groups, job control and non-job control shells, reliable and unreliable signals, shell Programming. [7]

# Unit II

Inter process communication in Unix, pipes, half duplex and full duplex pipes, FIFOs, properties of pipes and FIFOs, POSIX message queues, system V message queues, semaphores, shared memory, mmap function and its use, RPC, authentication, timeout and retransmission, call semantics, XDR.

### Unit III

Communication Protocol – Introduction, TCP, IP, XNS, SNA, NetBIOS, OSI protocols, comparisons. Introduction to Berkeley sockets, socket addressing, TCP and UDP socket functions, sockets and Unix signals, socket implementation, client and server examples for TCP and UDP and their behavior under abnormal conditions. [8]

Unit- IV

Socket options, IPv4, IPv6, TCP, I/O multiplexing, Unix I/O models, select and poll functions, System V Transport Layer, interface – Introduction Transport End Point address, TLI. [7]

- 1 W. R. Stevens, B. Fenner & A. M. Rudoff, Unix Network Programming, Vol. I, 3rd Ed., Pearson Education
- 2 W. R. Stevens , Unix Network Programming, Vol. II, 2nd Ed., Pearson Education
- 3 Comer and Stevens, Internetworking with TCP/IP, Vol. I, II and III, PHI
- 4 Christian Benvenuti, Understanding Linux Network Internals, O'Reilly
- 5 W. R. Stevens, Advanced Programming in Unix Environment, Pearson Education

| BTC     | <b>CS-513</b> A | A    | Linux Server Administratio | n |   |   |   |
|---------|-----------------|------|----------------------------|---|---|---|---|
| Mid-Sem | End-Sen         | n MM | ]                          |   | Т | Р | С |
| 40      | 60              | 100  |                            | 3 | 0 | 0 | 3 |
|         |                 |      |                            |   |   |   |   |

**Course Objectives:** 

- To develop a strong command line based administration skill in Linux based OS.
- To develop the knowledge of working principles, installation and configuration of different servers.

### **Course Outcomes:**

- After undergoing this course students will be able to
- 1. Being able to install Linux based OS in machines
- 2. Become proficient in command line based system administration in Linux
- 3. Gain the ability to create and manipulate permissions for different users in a Linux based OS
- 4. Get clear concept of the file system structure of Linux based OS
- 5. Effectively learn to install and configure a number of different servers in a Linux based OS learn to troubleshoot different server problems

### Unit I

Introduction to Linux - History, Architecture, Comparison with UNIX, Features and Facilities of Linux, Basic commands in Linux, Files and File Structure - Linux File System, Boot block, Super block, Inode table, Data blocks, Linux standard directories. File naming Conventions, Path, Types of file names and Users, File Commands in Linux, file comparisons, Directory Commands, Text Editors-Functions of a Text Editor, vi Editor, Locating Files, File Access Permissions [FAP], Viewing and Changing FAPs, Redirection, Filters, Pipes. [8]

### Unit II

Basics of shell programming, various types of shell available in Linux, comparisons between various shells, shell programming in bash - Conditional and looping statements, Iterations, Command Substitution - expr command, arithmetic expansion, parameter passing and arguments, Shell variables, system shell variables, shell keywords, Creating Shell programs for automating system tasks. [8]

### Unit III

Common administrative tasks, identifying administrative files configuration and log files, Role of system administrator, Managing user accounts-adding &deleting users, changing permissions and ownerships, Creating and managing groups, modifying group attributes, Temporary disabling of users accounts, creating and mounting file system. [7]

### Unit IV

Communication in Linux - mesg, who- T, talk, write, wall, finger, chfn, ping, traceroute utilities, email facilities . Configuration of servers- Telnet, FTP, DHCP,NFS, SSH, Proxy Server(Squid), Web server (Apache), Samba. Daemons- init, crond, atd, xinetd, inetd, the services file. named, sshd, httpd.[7]

- 1. Operating System Linux, NUT Press, PHI Publisher, 2006 Edition
- 2. Red Hat Linux Bible, Cristopher Negus, Wiley Dreamtech India
- 3. UNIX Shell Programming by YeswantKanetkar, BPB
- 4. Linux Administration Handbook, EviNemeth, Garth Snyder, Trent KHein -Pearson Education.
- 5. Beginning Linux Programming by Neil Mathew & Richard Stones, Wiley Dreamtech India

**BTCS-514A** 

**Python Programming** 

Т

0

[6]

[6]

Р

0

C

3

L

3

Mid-Sem End-Sem MM 60 100 40 **Course Objectives:** 

This course will provide the in-depth knowledge of basic and advanced Programming skills in Python language.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. To develop proficiency in creating applications using basic constructs of Python.
- 2. To be able to understand the various data structures available in Python programming language and apply them in solving computational problems.
- 3. To be able to do testing and debugging of code written in Python.
- 4. To be able to understand OOP concepts and text filtering with regular expressions.
- 5. To be able to understand network traffic analysis and use of Python in this domain.

# Unit I: Introduction

Introduction: History, Features, Installation and setting up path, working with Python, Basic Syntax, Variable and Data, Types, Operator, Control Structures: Conditional Statements: If, Ifelse, Nested if-else, Loops: For, While, Nested loops, Control Statements: Break, Continue, Pass.

# Unit II: Data Structures, Lists, Tuples, Dictionaries and Functions

Data Structures: String Manipulation: Accessing Strings, Basic Operations, String slices, Function and Methods, Lists: Introduction, accessing list, operations, working with lists, Function and Methods. Tuples: Introduction, accessing tuples, operations, working, Functions and Methods, Dictionaries: Introduction, accessing values in dictionaries, Working with dictionaries, Properties. Functions: Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables. [7]

# Unit III: Modules, Input-Output and Exception Handling

Modules: Importing module, Math module, Packages, Input-Output: Printing on screen, reading data from keyboard, Opening and closing file, Reading and writing files, Functions, Exception Handling: Exception, Exception Handling, except clause, Try clause, user defined exceptions.

# **Unit IV: OOPs concepts and Regular expressions**

OOPs concepts: Class and object, Attributes, Inheritance, Overloading, Overriding, Data hiding, Regular expressions: Match function, Search function, Matching VS Searching, Modifiers, Patterns. [6]

# Unit V:Advance applications of Python

Advance applications of Python: Network Analysis using Python, concept of Packet stream, Introduction to Wireshark, T-Shark network analysis tools, PCAP format, Statistical analysis of PCAP files.

- 1. Kenneth A. Lambert, The Fundamentals of Python: First Programs, 2011, Cengage Learning, ISBN: 978-1111822705.
- 2. R. Nageswara Rao, "Core Python Programming", Dreamtech.
- 3. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India.

| BTCS-505A         |                                                                                                                                                                                     | L        | <b>Computer Networks-II Laboratory</b>    |        |        |        |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|--------|--------|--------|--|--|--|
| Mid-Se<br>30      | End-Sem<br>20                                                                                                                                                                       | MM<br>50 | L<br>0                                    | Т<br>0 | Р<br>2 | C<br>1 |  |  |  |
| Course O          | Course Objectives: The objective of the course is to offer good understanding of the concepts<br>of network security, wireless, Adhoc and various emerging network<br>technologies. |          |                                           |        |        |        |  |  |  |
| Course O          | utcomes:                                                                                                                                                                            |          |                                           |        |        |        |  |  |  |
| After under 1. De | ergoing this c                                                                                                                                                                      | ourse s  | students will be able to mplement server. |        |        |        |  |  |  |

- 2. Design and implement inter switch communication.
- Configure router for routing, PPP and MLPPP and PPPoE access.
   Implement traffic filtering using ACL STATE
- 5. Configure wireless adhoc networks.

- 1. Installation of CISCO packet tracer.
- 2. To Implementation of web server in CISCO packet tracer.
- 3. To configure, verify and troubleshooting of VLANs,
- 4. To configure, verify and troubleshooting of interswitch connectivity
- 5. To configure, verify, and troubleshoot STP protocols
- 6. To configure, verify, and troubleshoot single area and multi area OSPFv2, OSPFv3, for IPv4 and IPv6.
- 7. To configure, verify, and troubleshoot single area and multi area EIGRP for IPv4 and IPv6.
- 8. To configure and verify PPP and MLPPP on WAN interfaces using local authentication
- 9. To configure, verify, and troubleshoot PPPoE client-side interfaces using local authentication
- 10. To demonstrate the traffic filtering using access control list.
- 11. To configure Adhoc networks.

# BTCS-506A

Mid-SemEnd-SemMM302050

# **Course Objectives:**

# **DBMS Laboratory**

Т

0 3

L 0 Р

С

1

To learn practical aspects of Relational database design using SQL for different applications. also understand about triggers, cursors and stored procedures etc. Course Outcomes:

After undergoing this course students will be able to

- 1. Describe DBMS architecture, physical and logical database designs, database modeling, relational, hierarchical and network models.
- 2. Understand and apply structured query language (SQL) for database definition and database manipulation.
- 3. Understanding of normalization theory and apply such knowledge to the normalization of a database
- 4. Understand various transaction processing, concurrency control mechanisms and database protection mechanisms
- 5. Understand Distributed Databases, Techniques for Distributed Database design and types of Recovery Techniques.

- 1. Introduction to SQL and installation of SQL Server / Oracle.
- 2. Data Types, Creating Tables, Retrieval of Rows using Select Statement, Conditional Retrieval of Rows, Alter and Drop Statements.
- 3. .Working with Null Values, Matching a Pattern from a Table, Ordering the Result of a Query, Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements.
- 4. Views, Indexes, Database Security and Privileges: Grant and Revoke Commands, Commit and Rollback Commands.
- 5. PL/SQL Architecture, Assignments and Expressions, Writing PL/SQL Code, Referencing Non-SQL parameters.
- 6. Stored Procedures and Exception Handling., Triggers and Cursor Management in PL/SQL.
- 7. Case studies on normalization.
- 8. Study and usage of open source data mining tool: Weka
- 9. Study of web databases
- 10. Development of a project by making use of tools studied above.

# BTCS-507A

**Algorithm Analysis and Design Laboratory** 

Mid-Sem End-Sem MM 30 20 50 L T P C 0 0 3 1

**Course Objectives:** 

- To get a first-hand experience of implementing well-known algorithms in a high-level language.
- To be able to compare the practical performance of different algorithms for the same problem.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Identify the problem given and design the algorithm using various algorithm design techniques.
- 2. Implement various algorithms in a high level language.
- 3. Analyze the performance of various algorithms.
- 4. Compare the performance of different algorithms for same problem

- 1. Code and analyze to compute the greatest common divisor (GCD) of two numbers.
- 2. Code and analyze to find the median element in an array of integers.
- 3. Code and analyze to find the majority element in an array of integers.
- 4. Code and analyze to sort an array of integers using Heap sort.
- 5. Code and analyze to sort an array of integers using Merge sort.
- 6. Code and analyze to sort an array of integers using Quick sort.
- 7. Code and analyze to find the edit distance between two character strings using dynamic programming
- 8. Code and analyze to find an optimal solution to weighted interval scheduling using dynamic programming.
- 9. Code and anlayze knapsack problem using Greedy method.
- 10. Code and analyze to do a depth-first search (DFS) on an undirected graph.
- 11. Code and analyze to do a breadth-first search (BFS) on an undirected graph.
- 12. Code and analyze to find shortest paths in a graph with positive edge weights using Dijkstra's algorithm.
- 13. Code and analyze to find shortest paths in a graph with arbitrary edge weights using Bellman-Ford algorithm.
- 14. Code and analyze to find the minimum spanning tree in a weighted, undirected graph.
- 15. Code and analyze to find all occurrences of a pattern P in a given string S.

# **Departmental Elective-I Laboratory (BTCS-DE1A Lab)**

| BTCS-515A |         | L  | Java Programming Laboratory |   |   |   |
|-----------|---------|----|-----------------------------|---|---|---|
| Mid-em    | End-Sem | MM | L                           | T | Р | C |
| 30        | 20      | 50 | 0                           | 0 | 2 | 1 |

# o Course Objectives: This course will provide the knowledge of Java programs and prepare students t be in a Position to write object oriented programs in Java.

Course Outcomes: After undergoing this course students will be able to

- 1. Develop problem-solving and programming skills using object orient programming concept.
- 2. Design and implement a well bounded application to demonstrate the methods of threa and string handling.
- 3. Implement the networking features and database connectivity. Design and implement mou and keyboard events. Implement various string and exception handling methods

# Lis<mark>t of Practicals</mark>

- 1. Implementation of classes.
- 2. Implementation of inheritance.
- 3. Implementation of packages and interfaces
- 4. Implementation of threads.
- 5. Using exception handling mechanisms.
- 6. Implementation of Applets.
- 7. Implementation of mouse events, and keyboard events.
- 8. Implementing basic file reading and writing methods.
- 9. Using basic networking features.
- 10. Connecting to Database using JDBC
- 11. Develop some basic Java Application Project.

| BTCS-516A |         |    | Network Programming Laborat | ory | 7 |   |
|-----------|---------|----|-----------------------------|-----|---|---|
| Mid-Se    | End-Sem | MM | L                           | Т   | Р | С |
| 30        | 20      | 50 | 0                           | 0   | 2 | 1 |
|           |         |    |                             |     |   |   |

Course Objectives: This course will provide the knowledge of Network programs and prepare students to be in a Position to write network programs.

# **Course Outcomes:**

А After undergoing this course students will be able to

- 1. Implement network management commands.
- Understand system calls and implement enter process communication, message queues.
   Implement enter process communication, message queues.
- Implement pipes and process control.
   Implement file handling.
   Implement socket programming.

# **List of Practicals**

UR, *PU* 

- 1. To study and implement various network commands like telnet, ftp, etc.
- 2. To study various system calls.
- 3. Programs related to interprocess communication
- 5. Programs related to message queues
- 6. Programs related to pipes
- 7. Programs related to file handling
- 8. Programs related to process control
- 9. Programs using Socket Programming

С

1

| BLC    | CS-517A | L  | Linux Server Administration La | bo | rator | y |
|--------|---------|----|--------------------------------|----|-------|---|
| Mid-Se | End-Sem | MM | L                              | Т  | Р     |   |
| 30     | 20      | 50 | 0                              | 0  | 2     |   |

Course Objectives: This course will provide the knowledge of Linux commands and Installation and prepare students to be in a Position to write Linux programs.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Practically able to install Linux based OS in machines
- 2. Understand the command line based system administration in Linux with practical example.
- 3. Able to create and manipulate permissions for different users in a Linux based OS
- 4. Understand the better view of file system structure of Linux based OS
- 5. Practically learn to install and configure a number of different servers in a Linux based OS learn too troubleshoot different server problems

# **List of Practicals**

1 Installation of Linux over the machines, network based installation.

2. Basic Overview of various commands- cal, pwd, cd, ls, mv, cd, cp, rm, mkdir, rmdir, more, less, touch

- . Creating and viewing files using cat, file comparisons, disk related commands, checking disk free spaces. Batch commands, kill, ps, who, Printing commands, find, sort, touch, file, file processing commands- wc, cut, paste etc - mathematical commands - expr, factor etc. er
- 3. Filter commands- pr, head, tail, cut, sort, uniq, tr Filter using regular expression grep, egrep, sed, a wk, etc.
- 4. Shell Programming -Shells, Scripting Rationale Creating a bash Script, bash Start up Files, A Script' s Environment, Exporting Variables, Exit Status, Programming the Shell, Parameter Passing, Operators, looping, Input and Output.
- 5. Process Management with Linux, File System management, User Administration, Linux Start up and Shutdown, Software package Management, Network Administration.
- 6. LAN Card configuration, Server Configuration- DHCP, DNS, FTP, Telnet, SSH, NFS, Web Server, SQUID Proxy server.

| BTCS-518A |         |    | Python Programming Laborator | ry |   |   |
|-----------|---------|----|------------------------------|----|---|---|
| Mid-Sem   | End-Sem | MM | L                            | Т  | P | C |
| 30        | 20      | 50 | 0                            | 0  | 2 | 1 |

Course Objectives: This course will provide the knowledge of Python commands and Installation and prepare students to be in a Position to write Python Programs.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand different types of control structures of python.
- 2. Understand and working of exception handling and assertions.
- 3. Design and implement python programs with different types of protocols

- 1. Develop programs to understand the control structures of python.
- 2. Develop programs to learn different types of structures (list, dictionary, tuples) in python.
- 3. Develop programs to learn concept of functions scoping, recursion and list mutability.
- 4. Develop programs to understand working of exception handling and assertions.
- 5. Develop programs for data structure algorithms using python searching and sorting.
- 6. Develop programs to learn regular expressions using python.
- 7. Develop programs to learn OOP concepts.
- 8. Develop programs to understand the concepts of packet and its structure.
- 9. Develop programs to display different types of protocols, packets, count no. of packets, packet analysis, time series analysis using time and packet windows.
- 10. Develop programs to compute several statistical measures like Shannon entropy, standard deviation, median, variance etc.

| BTCS-508A |         |     | Training -II |   |   |   |
|-----------|---------|-----|--------------|---|---|---|
| Mid-Sem   | End-Sem | MM  | L            | Т | Р | C |
| 40        | 60      | 100 | 0            | 0 | 0 | 3 |

The student will undergo 6 weeks industrial training for making various projects



| BTH     | IU-501A     |                               | Profe                                          | essional Skil                            | ls-III                   |                |                   |                       |
|---------|-------------|-------------------------------|------------------------------------------------|------------------------------------------|--------------------------|----------------|-------------------|-----------------------|
| Mid-Sem | End-Sem     | MM                            |                                                |                                          | L                        | Т              | Р                 | С                     |
| 30      | 20          | 50                            |                                                |                                          | 0                        | 0              | 2                 | 1                     |
| Course  | Objectives: | This course was Students to b | ill provide the knowledge in a Position to unc | edge of Professior<br>lerstand various t | al skills t<br>erms of P | opics<br>rofes | s and j<br>ssiona | prepare<br>Il skills. |
| Course  | Outcomes:   | nis course stude              | ents will be able to                           |                                          |                          |                |                   |                       |

After undergoing this course students will be able to

- 1 Understand nuances of group dynamics and team-work and also to develop ability for effective conflict management.
- 2 Sharpen and demonstrate Verbal Ability, Spatial Ability and Memory skills.
- 3 Understand the linkage between attitude and behaviour and its role in professional and personal well-being.
- 4 Develop and demonstrate oral and written communication skills such as Oral presentations, Group discussion, Resume writing, job application writing, email
- 5 writing

# Unit I

Concepts of Groups and Teams: Groups and Group dynamics, Group cohesiveness, compliance and Conformity. Team building, Team work, Conflict: types and resolutions.

### **Unit II** Mental Abilities: Verbal Ability, Spatial Ability, Memory.

# Unit III

Attitude: Meaning of attitude, link between attitude and behavior, Persuasion, attitude towards work environment, Work-force Diversity, Significance of Happiness, Optimism, Wellbeing. ACL: introduction, Configuration and troubleshooting ACL for traffic filtering.

## Unit IV

Communication Skills: Job Application Writing, Resume Writing, email writing, Group Discussion, Power Point Presentation.

- 1. Organizational Behaviour by Stephen Robbins, Pearson Education
- 2. Positive Psychology: The Scientific and Practical Explorations of Human Strengths, C R Snyder and Shane J. Lopez, Jennifer, Pedrotti, Sage Publications.
- 3. Social Psychology by Robert Baron and Donn Irwin Byron, Prentice Hall India.
- 4. Handbook of Practical Communication Skills by Chrissie Wright, Jaico Publications, Mumbai.
- 5. Effective Technical Communication by M. Ashraf Rizvi, Tata McGraw Hill.
- 6. Model Business Letters, E-mails & Other Business Documents, 6<sup>th</sup> Edition, by Shirley Taylor, Pearson Education.
- 7. Communication skills for Engineers by Sunita Mishra and C. Muralikrishna, Pearson Education, 2004.



| BTCS-601A |         |     | <b>Compiler Design</b> |   |   |   |   |
|-----------|---------|-----|------------------------|---|---|---|---|
| Mid-Sem   | End-Sem | MM  |                        | L | Т | Р | С |
| 40        | 60      | 100 |                        | 3 | 1 | 0 | 4 |

# **Course Objectives:**

This course will provide the in-depth knowledge of different concepts involved while designing a compiler.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Introduce the major concept areas of Language translation and compiler design.
- 2. Understand the concepts of Syntax Analysis and Semantic Analysis.
- 3. Learn the concepts of Parsing.
- 4. Understand, design code generation schemes.
- 5. Understand optimization of codes and runtime environment.

# Unit I: Overview of compilation

The structure of a compiler and applications of compiler technology; Lexical analysis - The role of a lexical analyzer, specification of tokens, recognition of tokens, hand-written lexical analyzers, LEX, examples of LEX programs. [4]

# Unit II: Introduction to syntax analysis

Role of a parser, use of context-free grammars (CFG) in the specification of the syntax of programming languages, techniques for writing grammars for programming languages (removal left recursion, etc.), non- context-free constructs in programming languages, parse trees and ambiguity, examples of programming language grammars. [5]

# Unit III: Top-down parsing

FIRST & FOLLOW sets, LL(1) conditions, predictive parsing, recursive descent parsing, error recovery. LR-parsing - Handle pruning, shift-reduce parsing, viable prefixes, valid items, LR(0) automaton, LR-parsing algorithm, SLR(1), LR(1), and LALR(1) parsing. YACC, error recovery with YACC and examples of YACC specifications. [5]

# Unit IV: Syntax-directed definitions (attribute grammars)

Synthesized and inherited attributes, examples of SDDs, evaluation orders for attributes of an SDD, dependency graphs. S-attributed and L-attributed SDDs and their implementation using LR-parsers and recursive descent parsers respectively. [4]

### Unit V: Semantic analysis

Symbol tables and their data structures. Representation of "scope". Semantic analysis of expressions, assignment, and control-flow statements, declarations of variables and functions, function calls, etc., using S-attributed and L-attributed SDDs (treatment of arrays and structures included). Semantic error recovery. [4]

### Unit VI: Intermediate code generation

Different intermediate representations –quadruples, triples, trees, flow graphs, SSA forms, and their uses. Translation of expressions (including array references with subscripts) and assignment statements. Translation of control-flow statements – it- then-else, while-do, and switch. Short-circuit code and control-flow translation of Boolean expressions. Back patching. Examples to illustrate intermediate code generation for all constructs. [5]

## **Unit VII: Run-time environments**

Stack allocation of space and activation records. Access to non-local data on the stack in the case of procedures with and without nesting of procedures. [3]

# Unit VIII: Introduction to machine code generation and optimization

Simple machine code generation, Examples of machine-independent code optimizations. [3]

- 1. Aho, Ullman: Principles of Compiler Design. Narosa Publication.
- 2. Dhamdhere:Compiler Construction- Principles and Practice,Macmillan, India
- 3. K.D. Cooper, and Linda Torczon, Engineering a Compiler, Morgan Kaufmann, 2004.
- 4. Holub:Compiler Design in C, PHI.
- 5. K.C. Louden, Compiler Construction: Principles and Practice, Cengage Learning, 1997.
- 6. D. Brown, J. Levine, and T. Mason, LEX and YACC, O'Reilly Media, 1992.
- 7. Compilers: Principles, Techniques and Tools, Pearson Education.



| BTC                                                                        | CS-602A                                                                                                                          |                                                                                    | <b>Computer Graphics</b>                                                                                                                                                                                                                                                                                                                                              |                                      |                                      |                                 |              |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------|
| Mid-Sem<br>40                                                              | End-Sem<br>60                                                                                                                    | MM<br>100                                                                          |                                                                                                                                                                                                                                                                                                                                                                       | L<br>3                               | Т<br>1                               | Р<br>0                          | С<br>4       |
| Course Ob<br>Understand<br>system, get<br>interface is                     | jectives:<br>ling the fu<br>a glimpse o<br>sues that m                                                                           | indame<br>of recen<br>take the                                                     | ental Graphical operations and implementing them<br>at advances in computer graphics, understanding the<br>e computer easy to use.                                                                                                                                                                                                                                    | on<br>gra                            | co<br>phic                           | mpu<br>cal us                   | ter<br>ser   |
| <b>Course Ou</b><br>After under<br>1.<br>2.<br>3.<br>4.<br>5.              | tcomes:<br>going this c<br>To gain the<br>devices suc<br>To understa<br>To understa<br>To analyse<br>and its type<br>Detailed kr | ourse st<br>basic k<br>h as ras<br>and the<br>and the<br>and imp<br>es.<br>lowledg | udents will be able<br>cnowledge on computer graphics and its various elements<br>ster and random scan systems.<br>scan conversion for generating point, line, circle and ellip<br>theory of 2D and 3D transformations and clipping techni<br>plement the Filling techniques and to understand the plan<br>ge of visible surface detection methods and surface shadin | s, vi<br>pse<br>ique<br>ne p<br>ng a | deo<br>struc<br>s.<br>rojec<br>ilgor | displ<br>cture<br>ction<br>ithm | lay<br>s.    |
| Unit I: Intr<br>Computer (<br>devices, Ra<br>Unit II: Ba<br>Scan conver    | oduction<br>Graphics an<br>ster scan sys<br>sic Raster (<br>rsion- Point                                                         | d its ap<br>stems, R<br>G <b>raphi</b> c<br>plot, Li                               | oplications, Elements of a Graphics, Graphics Systems:<br>Random scan systems, various Input / Output devices.<br>cs<br>and drawing, Circle generating and Ellipse generating alg                                                                                                                                                                                     | Vi                                   | deo<br> <br>hms                      | disp]<br>[3]<br>. [3]           | lay          |
| Unit III: T<br>Basic Trans<br>co-ordinates<br>Unit IV: C                   | wo-dimensi<br>sformations<br>s, Composit                                                                                         | onal Ge<br>Transla<br>e Transf                                                     | eometric Transformations<br>ation, Rotation and Scaling, Matrix representation and<br>formations, Reflection and Shearing transformations.                                                                                                                                                                                                                            | Ho                                   | mog<br>[4                            | geneo<br>4]                     | ous          |
| Window to<br>Clipping an<br><b>Unit V: Fil</b><br>Scan Line<br>algorithms. | viewport t<br>d Text Clipp<br>ling Techni<br>algorithm,                                                                          | ransforr<br>ping.<br><b>ques</b><br>Bound                                          | nation, Clipping Operations- Point Clipping, Line Clip<br>dary-fill algorithm, Flood-fill algorithm, Edge-fill                                                                                                                                                                                                                                                        | əpir<br>and                          | ng, H<br>[5]<br>Fe<br>[4]            | Polyg<br>]<br>ence-             | yon<br>∙fill |
| Plane projec<br>Unit VII:V<br>Image and<br>techniques;<br>technique.       | ctions and it<br>isibility<br>object pre<br>z buffer a                                                                           | s types,<br>cision,<br>lgorithr                                                    | Vanishing points, Specification of a 3D view.<br>Hidden edge/surface removal or visible edge/surface<br>ns, Depth sort algorithm, Scan line algorithm and F                                                                                                                                                                                                           | e d<br>loat                          | [4<br>etern<br>ing<br>[4]            | 4]<br>minat<br>Hori             | tion<br>izon |

# Unit VIII: Advance Topics

Introduction of Rendering, Raytracing, Antialiasing, Fractals, Gourard and Phong shading. [4]

- 1. Donald Hearn and M.Pauline Baker, "Computer Graphics", Second Edition, PHI/Pearson Education.
- 2. Zhigand xiang, Roy Plastock, Schaum's outlines, "Computer Graphics Second Edition", Tata Mc-Grawhill edition.
- 3. C, Foley, VanDam, Feiner and Hughes, "Computer Graphics Principles & Practice", Second Edition, Pearson Education

| BT                                                                                                                                                                                                                                                                         | CS-603A                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Software                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Engine                                                                                                                                                                                                                                                                                        | eering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                 |                                                                                                                                    |                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Mid-Sem<br>40                                                                                                                                                                                                                                                              | End-Sem<br>60                                                                                                                                                                                                                                                                                                                                                                                                            | MM<br>100                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>3                                                                                                         | Т<br>1                                                                                                                                                          | Р<br>0                                                                                                                             | С<br>4                                                                                   |
| Course Ol                                                                                                                                                                                                                                                                  | ojectives: In<br>so<br>m                                                                                                                                                                                                                                                                                                                                                                                                 | this co<br>ftware<br>anagen                                                                                                                                                               | urse students will g<br>engineering and its<br>eent of software syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ain a broad u<br>application t<br>tems.                                                                                                                                                                                                                                                                                                                                                                                                         | nderstandi<br>to the develo                                                                                                                                                                                                                                                                     | ng of the d<br>opment of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iscip<br>and                                                                                                   | line                                                                                                                                                            | of                                                                                                                                 |                                                                                          |
| Course Or<br>After unde<br>1.<br>2.<br>3.<br>4.<br>5.<br>Evolution<br>Evolution<br>Requireme<br>Basic issue<br>design: I<br>developme<br>Fundament<br>techniques<br>modelling.<br>Software p<br>PERT and<br>SEI CMM<br>reuse, Con<br><b>Recomme</b><br>1 Rec<br>Hi<br>2 So | Itcomes:<br>rgoing this c<br>Understand<br>implement<br>maintenan<br>Analyse ar<br>various sta<br>Analyse ar<br>from the d<br>Apply rele<br>Understand<br>manageme<br>and impact<br>ry, and Spi<br>nts gathering<br>es in softwar<br>DFD and<br>nt, user inter<br>tals of testin<br>, mutation te<br>project mana<br>GANTT ch<br>I, PSP and S<br>ponent-base<br>nded Text ar<br>ager Pressma<br>II, 1997.<br>mmerville," | ourse st<br>d a softwation, a<br>ce and c<br>ad specific<br>keholde<br>ad translesign us<br>vant sta<br>ling how<br>nt, time<br>of Softwat<br>gement<br>arts, co<br>six Sign<br>d softwat | udents will be able to<br>vare engineering pro-<br>nd testing of softwar<br>uality requirements<br>fy software requirements<br>fy software requirements<br>fy software requirements<br>ate a specification in<br>ing an appropriate so<br>ndards and performent<br>v to use modern engine<br>management and so<br>ut to use modern engine<br>to use modern enginet to use modern enginet to use | cess life cycle<br>e systems that<br>ents through a<br>to a design, an<br>oftware engine<br>testing, and quartering tools<br>ftware reuse.<br><b>init I</b><br>software life<br>tudy, Function<br>specification<br><b>nit II</b><br>ton, coupling<br>modelling u<br>ds and Code re<br><b>nit III</b><br>x testing, Tes<br>nalysis, Softw<br><b>nit IV</b><br>nd control, c<br>ayleigh-Norde<br>software engine<br>A Practitic<br>dition", Adiso | e, including<br>meet specif<br>a productive<br>nd then reali-<br>eering metho-<br>iality manag<br>necessary for<br>e cycle mo-<br>nal and N<br>and layering<br>sing UML,<br>eview technic<br>t coverage a<br>vare reliability<br>ost estimation<br>meering, sof<br>oners Appro-<br>on Wesley, 1 | the specific<br>fication, per<br>working re<br>ize how to o<br>odology.<br>gement and<br>or software<br>dels: Wate<br>lon-functio<br>g, function-<br>g, function-<br>dels: Wate<br>lon-functio<br>g, function-<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: Wate<br>lon-functio<br>dels: dels: dels: dels<br>dels: dels: dels<br>dels: dels<br>dels<br>dels: dels<br>dels<br>dels<br>dels<br>dels<br>dels<br>dels<br>dels | cation<br>rform<br>elatio<br>devel<br>praci<br>proje<br>erfall,<br>onal<br>orien<br>orien<br>d tess<br>, relia | n, de<br>nance<br>nshi<br>lop tl<br>tice.<br>ect<br>, pro<br>requ<br>[7<br>nted<br>ted<br>[8<br>t cas<br>abilit<br>[7]<br>eduli<br>nent,<br>nce,<br>[8]<br>on), | sign,<br>e,<br>p wit<br>he co<br>btotyp<br>iirem<br>7]<br>softv<br>soft<br>3]<br>softv<br>soft<br>soft<br>ISO<br>softv<br>l<br>McG | h<br>de<br>ping,<br>ents,<br>vare<br>ware<br>sign<br>pwth<br>using<br>and<br>vare<br>raw |
| 3 W<br>4 Jan<br>5.<br>Fu                                                                                                                                                                                                                                                   | atts Humphre<br>mes F. Peters<br>Mouratidi<br>ture", IGP. Is                                                                                                                                                                                                                                                                                                                                                             | ey, Ma<br>and W<br>s and C<br>SBN – 1                                                                                                                                                     | naging software proc<br>itold Pedrycz, "Softw<br>Giorgini. "Integratin<br>-59904-148-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xess", Pearson<br>wareEngineeri<br>g Security an                                                                                                                                                                                                                                                                                                                                                                                                | education, 2<br>ing – An En<br>id Software                                                                                                                                                                                                                                                      | 2003.<br>gineering A<br>Engineerin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Appro<br>ng-A                                                                                                  | bach <sup>:</sup><br>dvai                                                                                                                                       | ", Wi<br>nces                                                                                                                      | lley.<br>and                                                                             |
| 5 Pa                                                                                                                                                                                                                                                                       | пкај ЈаЮе, *                                                                                                                                                                                                                                                                                                                                                                                                             | All Inte                                                                                                                                                                                  | grated approach to S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onware Engli                                                                                                                                                                                                                                                                                                                                                                                                                                    | icering , sp                                                                                                                                                                                                                                                                                    | nnger/Ivaf(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J8a.                                                                                                           |                                                                                                                                                                 |                                                                                                                                    |                                                                                          |

| BTCS-604A                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                | Data Warehouse & Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |                                                                                              |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Mid-Sem<br>40                                                                                                                                                                                                            | End-Sem<br>60                                                                                                                                                                                                                                | MM<br>100                                                                                                                                      | L<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т<br>1                                                                                               | Р<br>0                                                                                       | C<br>4                                                    |
| Course Ob                                                                                                                                                                                                                | jectives: Th<br>co<br>Dat                                                                                                                                                                                                                    | iis cou<br>oncep<br>ta Wa                                                                                                                      | rse offers a good understanding of Data Warehousing and miss and prepares the student to be in a position to use and design rehousing and mining based technologies for different application application is the student statement of the statement | inin<br>gn v<br>atio                                                                                 | ng<br>vario<br>ns.                                                                           | us                                                        |
| Course Ou<br>After under                                                                                                                                                                                                 | tcomes:<br>going this co<br>1. Grasp b<br>2. In-dept<br>3. Describ<br>4. Classif<br>5. Apply b                                                                                                                                               | ourse a<br>basic k<br>h knov<br>be abo<br>ication<br>the var                                                                                   | students will be able to<br>nowledge about the Data warehouse, architecture and relationshi<br>wledge of Temporal data warehouse<br>at data mining, its issues, processing models<br>of various measures, presentation and visualization of patterns.<br>ious association rules, association mining classification and clust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ps.<br>terir                                                                                         | ıg.                                                                                          |                                                           |
| Review of l<br>architecture<br>Systems, Sp<br>for Spatial<br>Spatial Fac<br>Introduction<br>and Relation<br>Temporal H<br>Logical Rep<br>Introduction<br>Interesting<br>Data Clean<br>hierarchy g<br>measures, Summariza | Data Wareho<br>e; MDDM ar<br>patial: Object<br>Data, Impler<br>t Relationshi<br>on to tempora<br>nships, Tem<br>Hierarchies, I<br>presentation<br>n to Data<br>ness, Classiff<br>ning, Data<br>enerate Data<br>presentation<br>tion, Attribu | ouse: I<br>nd its s<br>its, dat<br>nentat<br>ps.<br>al Dat<br>poral<br>Fact R<br>and T<br>Minin<br>ication<br>Integra<br>Mini<br>and<br>ted or | Unit I<br>Seed for data warehouse, Big data, Data Pre-Processing, Three tic<br>chemas, Introduction to Spatial Data warehouse, Architecture of<br>a types, reference systems; Topological Relationships, Conceptua<br>ion Models for Spatial Data, Spatial Levels, Hierarchies and Mea<br>Unit II<br>warehouse: General Concepts, Temporality Data Types, Synchr<br>Extension of the Multi-Dimensional Model, Temporal Support for<br>elationships, Measures, Conceptual Models for Temporal Data W<br>emporal Granularity.<br>Unit III<br>g, Kind of Data to be mined, Data Mining Functionalitit<br>of Data Mining System, Major Issues in Data Mining, Data<br>ation and Transformation, Data Reduction, Discretization an<br>hg Architecture: Data Mining primitives, Task relevant data, inter-<br>visualization of patterns, Concept Description, Data General<br>ented induction, Analytical characterization, Mining class compa<br>Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er<br>Spaal M<br>asure<br>on La<br>Vare<br>[7]<br>ees,<br>Pro<br>nd<br>erest<br>izat<br>ariso<br>[8] | tial<br>Iodel<br>es<br>zatio<br>evels<br>hous<br>7]<br>Patt<br>cessi<br>conc<br>tingn<br>ion | s<br>[7]<br>n,<br>es:<br>ern<br>ng:<br>eept<br>ess<br>and |
| Association<br>transaction<br>Constraint<br>tree inducti<br>clustering,                                                                                                                                                  | n Rules: As<br>databases, n<br>based associ<br>on, Bayesian<br>categorizatio                                                                                                                                                                 | sociat<br>nulti-c<br>ation<br>n class<br>on of c                                                                                               | on rules mining, Mining Association rules from single level<br>imensional relational databases and data warehouses, Correlatio<br>nining Classification and Clustering: Classification and predictio<br>ification, k-nearest neighbor classification, Cluster analysis, Typ<br>lustering methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l, n<br>nal<br>on,<br>es c<br>[8]                                                                    | nultil<br>anal<br>Deci<br>of da                                                              | evel<br>ysis,<br>sion<br>ta in                            |
| Recommer<br>1. I                                                                                                                                                                                                         | <b>ided Text a</b><br>Data Mining<br>Kaufmann Pi                                                                                                                                                                                             | nd Re<br>: Conc<br>ublish                                                                                                                      | <b>Serence Books</b><br>epts and Techniques By J.Han and M. Kamber Publisher Morgar<br>ers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                    |                                                                                              | <b>h</b>                                                  |

- 2. Advanced Data Warehouse Design (from conventional to spatial and temporal applications) by Elzbieta Malinowski and Esteban Zimányi Publisher Springer
- 3. Modern Data Warehousing, Mining and Visualization by George M Marakas, Publisher Pearson
- 4. Dunham: Data Mining Introductory and Advance Topics, Pearson Education, Latest Edition
- 5. Berson: Data Mining By TMH

# **Departmental Elective-II(BTCS-DE2A)**

| BT            | CS-611A                               |           | Mobile Application Developmer | nt     |        |        |
|---------------|---------------------------------------|-----------|-------------------------------|--------|--------|--------|
| Mid-Sem<br>40 | End-Sem<br>60                         | MM<br>100 | L<br>3                        | Т<br>0 | Р<br>0 | C<br>3 |
| C             | · · · · · · · · · · · · · · · · · · · | •         |                               |        |        |        |

Course Objectives: This course offers a good understanding of Mobile application and Development concepts and prepares the student to be in a position to use and design various Mobile application based technologies for different applications.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Appreciate the Mobility landscape
- 2. Familiarize with Mobile apps development aspects
- 3. Design and develop mobile apps, using Android as development platform, with key focus on user experience design, native data handling and background tasks and notifications.
- 4. Appreciation of nuances such as native hardware play, location awareness, graphics, and multimedia.
- 5. Perform testing, signing, packaging and distribution of mobile apps

# Unit 1: Getting started with Mobility

Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android platform, setting up the mobile app development environment along with an emulator, a case study on Mobile app [6]

# Unit II: Building blocks of mobile apps

App user interface designing – mobile UI resources (Layout, UI elements, Draw-able, Menu), Activitystates and life cycle, interaction amongst activities. App functionality beyond user interface - Threads, Async task, Services – states and life cycle,

App functionality beyond user interface - Threads, Async task, Services – states and life cycle, Notifications, Broadcast receivers.

**Telephony and SMS APIs** 

Native data handling – on-device file I/O, shared preferences, mobile databases such as SQLite, and enterprise data access (via Internet/Intranet). [6]

# Unit III: Sprucing up mobile apps

# Graphics and animation – custom views, canvas, animation APIs, multimedia – audio/video playback and record, location awareness, and native hardware access (sensors such as accelerometer and gyroscope). [6]

### **Unit IV: Testing mobile apps**

Debugging mobile apps, White box testing, Black box testing, and test automation of mobile apps, JUnit for Android, Robotium, MonkeyTalk. [6]

# Unit V: Taking apps to Market

Versioning, signing and packaging mobile apps, distributing apps on mobile market place. [5]

- 1. Anubhav Pradhan, Anil V Deshpande, "Mobile Apps Development" Edition: I
- Jeff McWherter, Scott Gowell "Professional Mobile Application Development", John Wiley & Sons, 2012.
- 3. Barry Burd, "Android Application Development All in one for Dummies", Edition: I
- 4. Teach Yourself Android Application Development In 24 Hours, Edition: I, Publication: SAMS
- Neal Goldstein, Tony Bove, "iPhone Application Development All-In-One For Dummies", John Wiley & Sons
- 6. Henry Lee, Eugene Chuvyrov, "Beginning Windows Phone App Development", Apress, 2012.
- 7. Jochen Schiller, "Mobile Communications", Addison-Wesley, 2nd edition, 2004.
- Stojmenovic and Cacute, "Handbook of Wireless Networks and Mobile Computing", Wiley, 2002, ISBN 0471419028.



| BTC     | CS-612A |     | Cloud Computing |   |   |   |   |
|---------|---------|-----|-----------------|---|---|---|---|
| Mid-Sem | End-Sem | MM  |                 | L | Т | P | C |
| 40      | 60      | 100 |                 | 3 | 0 | 0 | 3 |

## Course Objectives:

Upon completion of this course, students will have gained knowledge of Cloud Computing concepts and understanding of Cloud Computing principles and approaches.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Articulate the main concepts, underlying key technologies, strengths and limitations of cloud computing
- 2. Identify the architecture of cloud computing, including SaaS, PaaS, IaaS, public cloud, private cloud, hybrid cloud, etc
- 3. Identify the problems and explain, analyze and evaluate various cloud computing solutions..
- 4. Explain the core issues of cloud computing such as security and privacy.
- 5. Provide the appropriate cloud computing solutions and recommendations according to the application used.

**Unit I: Overview of cloud computing :** What is a cloud, Definition of cloud, characteristics of cloud ,Why use clouds, How clouds are changing , Driving factors towards cloud, Comparing grid with cloud and other computing systems, workload patterns for the cloud, "Big Data", [6]

Unit II: Cloud computing concepts: Concepts of cloud computing, Cloud computing leverages the Internet, Positioning cloud to a grid infrastructure, Elasticity and scalability, Virtualization, Characteristics of virtualization, Benefits of virtualization, Virtualization in cloud computing, Hypervisors, Multitenancy, Types of tenancy, Application programming interfaces (API), Billing and metering of services, Economies of scale, Management, tooling, and automation in cloud computing, Management: Desktops in the Cloud, Security. [6]

**Unit III: Cloud service delivery:** Cloud service, Cloud service model architectures, Infrastructure as a service (IaaS) architecture, Infrastructure as a service (IaaS) details, Platform as a service (PaaS) architecture, Platform as a service (PaaS) details, Platform as a service (PaaS), Examples of PaaS software, Software as a service (SaaS) architecture, Software as a service (SaaS) details, Examples of SaaS applications, Trade-off in cost to install versus, Common cloud management platform reference architecture: Architecture overview diagram, Common cloud management platform. [7]

Unit IV: Cloud deployment scenarios: Cloud deployment models, Public clouds, Hybrid clouds, Community, Virtual private clouds, Vertical and special purpose, Migration paths for cloud, Selection criteria for cloud deployment. [5]

**Unit V: Security in cloud computing**: Cloud security reference model, How security gets integrated, Cloud security, Understanding security risks, Principal security dangers to cloud computing, Virtualization and multitenancy, Internal security breaches, Data corruption or loss, User account and service hijacking, Steps to reduce cloud security breaches, Steps to reduce cloud security breaches, Reducing cloud security, Identity management: Detection and forensics, Identity management: Detection and Identity management, Benefits of identity, Encryption techniques, Encryption & Encrypting data, Symmetric key encryption, Asymmetric key encryption, Digital signature, What is SSL. [6] **Recommended Text and Reference Books** 

- 1. Raj Kumar Buyya, James Broberg, Andrezei M.Goscinski, Cloud Computing: Principles and
- 2. paradigms, 2011 2. Michael Miller, Cloud Computing, 2008.
- 3. Judith Hurwitz, Robin Bllor, Marcia Kaufman, Fern Halper, Cloud Computing for dummies, 2009.
- 4. Anthony T. Velte, Toby J. Velte and Robert Elsenpeter, Cloud Computing: A practical Approach ,McGraw Hill, 2010.
- 5. Barrie Sosinsky, Cloud Computing Bible, Wiley, 2011.
- 6. Borko Furht, Armando Escalante (Editors), Handbook of Cloud Computing, Springer, 2010.

# **BTCS-613A**

# **Information Security**

Mid-Sem End-Sem MM 40 60 100

С Т Р L 3 0 3 0

# **Course Objectives:**

Upon completion of this course, students will have gained knowledge of information security concepts and understanding of Information Security principles and approaches.

### **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand and learn the basics of Symmetric Ciphers.
- 2. Explain the concepts of Public key encryption and Digital Signatures.
- Use the concepts of Authentication Protocols.
   Understand the concepts of network security.
- 5. Describe the concepts of System Security.

### **Unit I: Symmetric Ciphers**

Overview: Services, Mechanisms and Attacks, The OSI Security Architecture, A Model of Network Security. Classical Encryption Techniques: Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor Machines, Steganography. Block Cipher and the Data Encryption Standard: Simplified DES, Block Cipher Principles, The DES, The Strength of DES, Differential and Linear Cryptanalysis. Symmetric Ciphers: Triple DES, Blowfish. Confidentiality using Conventional Encryption: Placement of Encryption Function, Traffic Confidentiality, Key Distribution, Random Number Generation. [7]

### Unit II: Public Key Encryption, Digital Signatures

Number Theory, Prime Numbers Formats and Euler's Theorems, Testing for Primality. Public Key Cryptography and RSA: Principles of Public Key Cryptosystems, The RSA Algorithms, Key Management, Diffie Hellman Key Exchange. [6]

### Unit III: Authentication Protocols

Message Authentication: Authentication Requirements, Authentication Functions, Message Authentication Codes, MD5 Message Digest Algorithms, Digital Signatures and Authentication Protocols: Digital Signatures, Authentication Protocols, Digital Signature Standards.

# **Unit IV: Network Security**

Authentication Applications: Kerberos, X.509 Directory Authentication Service. Electronic Mail Security: Pretty Good Privacy. IP Security: Overview, IP Security Architecture, Authentication Header, Encapsulation Security Payload. Web Security: Web Security Requirements, Secure Sockets Layer and Transport Layer Security, Secure Electronic Transaction. [6]

### **Unit V: System Security**

Intruders, Malicious Software, Viruses and Related Threats, Counter Measures, Firewalls and its Design Principles.

- 1. William Stallings, Network Security Essentials, Applications and Standards Pearson Education.
- 2. William Stallings, Cryptography and Network Security Principles and practice. 2/e, Pearson Education.
- 3. Bishop, Matt, Introduction to Computer Security. Addison-Wesley, Pearson Education, Inc. ISBN: 0-321-24744-2. (2005)
- 4. Michael. E. Whitman and Herbert J. Mattord Principles of Information Security, Cengage Learning Punjab Technical University B.Tech. Computer Science Engineering (CSE) 41 41
- 5. Atul Kahate Cryptography & Network Security, TMH, 2nd Edition
- 6. Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security: Private Communication in Public World, 2nd Edition, 2011, Pearson Education.

### **BTCS-614A Artificial Intelligence** Mid-Sem End-Sem MM С L Т Р 40 60 100 3 A 0 3 **Course Objectives:** Upon completion of this course, students will have gained knowledge of Artificial Intelligence concepts and understanding of Artificial Intelligence principles and approaches. **Course Outcomes:** After undergoing this course students will be able to 1. Understand and learn the basics of Artificial Intelligence. 2. Define the concepts of BFS and DFS.

- 3. Use the concepts of Reasoning, Planning and Uncertainty.
- 4. Understand the concepts of applications of AI.

Unit I: Introduction- What is intelligence? Foundations of artificial intelligence (AI). History of AI; Problem Solving- Formulating problems, problem types, states and operators, state space, search strategies, Introduction to Expert System. [4]

**Unit II**: Uninformed strategies-BFS,DFS, Iterative deepening DFS, Informed Search Strategies- Best first search, A\* algorithm, Hill climbing, Constraint satisfaction, heuristic functions, Iterative deepening A\*(IDA), small memory A\*(SMA); Game playing - Perfect decision game, imperfect decision game, evaluation function, alpha-beta pruning . [5]

**Unit III**: Reasoning-Representation, Inference, Propositional Logic, predicate logic (first order logic), logical reasoning, forward chaining, backward chaining, Resolution and Unification. [5]

**Unit IV**: Planning- Basic representation of plans, partial order planning, planning in the blocks world, hierarchical planning, conditional planning. [4]

**Unit V**: Uncertainty - Basic probability, Bayes rule, Belief networks, Default reasoning, Fuzzy sets and fuzzy logic; Decision making- Utility theory, utility functions. [4]

Unit VI: Inductive learning - decision trees, rule based learning, current-best-hypothesis search, Supervised and Unsupervised learning, least commitment search , neural networks, reinforcement learning, Monte Carlo Process. [4]

**Unit VII**: Applications of AI: Genetic Algorithm, Speech Recognition, Motion Detection, Character Recognition, Natural Language Processing etc. [4]

- 1. Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach, Pearson Education Press, 2001.
- 2. Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill, 2008.
- 3. George F. Luger, Artificial Intelligence, Pearson Education, 2001.
- 4. Nils J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kauffman, 2002.

| BTCS-60         | 5A   | <b>Computer Graphics Laborator</b> | y |   |   |
|-----------------|------|------------------------------------|---|---|---|
| Mid-Sem End-Sen | n MM | L                                  | Т | Р | С |
| 30 20           | 50   | 0                                  | 0 | 2 | 1 |

# **Course Objectives:**

Understanding the fundamental graphical operations and the implementation on computer get a glimpse of recent advances in computer graphics, Understanding user interface issues that make the computer easy for the novice to use.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand and explain the mathematical and theoretical principles of computer graphics eg: To draw basic objects like lines, triangles and polygons.
- 2. Implementation of fundamental algorithms and transformations involved in viewing models.
- 3. Implementation of projection models, illumination models and handling of hidden surfaces and clipping in computer graphics
- 4. Analyze and evaluate the use of computer graphics methods in practical applications and describe effects such as texture mapping and ant aliasing

- 1. To plot a point (pixel) on the screen.
- 2. To draw a straight line using DDA Algorithm.
- 3. To draw a straight line using Bresenham's Algorithm
- 4. Implementation of mid-point circle generating Algorithm
- 5. Implementation of ellipse generating Algorithm.
- 6. To translate an object with translation parameters in X and Y directions.
- 7. To scale an object with scaling factors along X and Y directions.
- 8. To rotate an object with a certain angle about origin.
- 9. Perform the rotation of an object with certain angle about an arbitrary point.
- 10. To perform composite transformations of an object.
- 11. To perform the reflection of an object about major axis.
- 12. clip line segments against windows using Cohen Sutherland Algorithm.
- 13. Perform the polygon clipping against windows using Sutherland Hodgeman technique.
- 14. Fill a rectangle with a specified color using scan line algorithm.
- 15. Implementation of flood-fill and boundary-fill algorithms.

# BTCS-606A

**Software Engineering Laboratory** 

| Mid-Sem | End-Sem | MM |
|---------|---------|----|
| 30      | 20      | 50 |

# ware Engineering Eaboratory

| L | Т | Р | С |
|---|---|---|---|
| 0 | 0 | 2 | 1 |

# **Course Objectives:**

In this course students will gain a broad understanding of the discipline of software engineering and its application to the development of and management of software systems.

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand the working and efficiency of the tools for estimation of project work
- 2. Understand the division of tasks to different persons among teams.
- 3. Draft and design the documents related to functional and non-functional requirements.
- 4. Design the test cases for testing software or a project.
- 5. Real time manual testing of a website and understand various parameters associated with it.

# List of Practicals

- 1. Study and usage of OpenProj or similar software to draft a project plan.
- 2. Study and usage of OpenProj or similar software to track the progress of a project.
- 3. Preparation of Software Requirement Specification Document, Design Documents and Testing Phase related documents for some problems.
- 4. Preparation of Software Configuration Management and Risk Management related documents.
- 5. Study and usage of any Design phase CASE tool.
- 6. To perform unit testing and integration testing.
- 7. To perform various white box and black box testing techniques.
- 8. Testing of a web site.

Suggested Tools - Visual Paradigm, Rational Software Architect. Visio, Argo UML, Rational Application Developer etc. platforms.

| BTCS-607A |         | <b>A</b> | Data Warehouse & Mining Laboratory |   |   |   |  |  |
|-----------|---------|----------|------------------------------------|---|---|---|--|--|
| Mid-Sem   | End-Sem | MM       | L                                  | Т | Р | C |  |  |
| 30        | 20      | 50       | 0                                  | 0 | 2 | 1 |  |  |

# **Course Objectives:**

In this course students will gain a broad understanding of the discipline of Data Warehousing & Mining Laboratory and its application to the development of Data Warehousing & Mining Programs

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand the working and efficiency of Weka tool.
- 2. Understand the classification of Mining techniques.
- 3. Draft and design the Classification and Visualization techniques.
- 4. Implement Data Cleansing.
- 5. Implement various Data Mining tools.

# Li<mark>st of Practical</mark>s

- 1. Introduction about launching the Weka tool.
- 2. Introduction to the classification of Mining techniques and Attribute Relation File Format (ARFF)
- 3. To perform Preprocessing, Classification and Visualization techniques on various datasets.
- 4. To perform Clustering and Association technique on various datasets.
- 5. Introduction to Data Cleansing.
- 6. To implement Data Cleansing by removing redundancy from given dataset in any programming language.
- 7. To study and implement Filters in Weka.
- 8. To study AR Miner Tool.
- 9. To study the usage of AR Miner Tool for Data Warehouse.
- 10. To study DB Miner Tool.

# **BTCS-608A**

Web and Open Source Technologies

| Mid-Sem | End-Sem | MM |
|---------|---------|----|
| 30      | 20      | 50 |

| L | Т | Р | C |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

# **Course Objectives:**

In this course students will gain a broad understanding of the discipline of Web and Open Source Technologies Laboratory and its application to the development of Web and Open Source **Technologies Programs** 

# **Course Outcomes:**

After undergoing this course students will be able to

- 1. Understand the working and HTML and DHTML.
- 2. Understand the concepts of CSS and Java Script.
- 3. Draft and design the Ajex based applications.
- 4. Implement various PHP programs.
- 5. Implement various Validation techniques of ASP.

- 1. Introduction to HTML and XHTML
- 2. Basic Tags in HTML.
- 3. Write a program to create lists.
- 4. Introduction to CSS.
- 5. Write a program to create menu using HTML and CSS.
- 6. Introduction to JavaScript.
- 7. Write a program to print date using JavaScript.
- 8. Write a program to Sum and Multiply two numbers using JavaScript.
- 9. Write a program to Show use of alert, confirm and prompt box.
- 10. Write a program to redirect, popup and print function in JavaScript.
- 11. Create validation Form in JavaScript.
- 12. Introduction to Ajax
- 13. Write a program to change content of web page using Ajax.
- 14. Write a program to create XML Http Request.
- 15. Introduction to PHP.
- 16. Write a program to Addition of two numbers using PHP.
- 17. Write a program to show data types in PHP.
- 18. Write a program to use arithmetic operator in PHP.
- 19. Write a program to using class in PHP.
- 20. Write a program to connect to database.
- 21. Write a program to insert data in database.
- 22. Introduction to asp.
- 23. Write a program to generate login control.
- 24. Write a program to perform validation operation.

| BTHU-601A |         | •  | <b>Professional Skills-IV</b> |   |   |   |
|-----------|---------|----|-------------------------------|---|---|---|
| Mid-Sem   | End-Sem | MM | L                             | Т | Р | С |
| 30        | 20      | 50 | 0                             | 0 | 2 | 1 |
|           |         |    |                               |   |   |   |

### **Course Outcomes:**

After undergoing this course students will be able to

- 1 Understand implications of varied aspects of Motivation and its assessment.
- 2 Understand and imbibe leadership skills and various styles of leadership.
- 3 Sharpen and demonstrate problem solving abilities, logical reasoning skills, verbal and numerical reasoning, Pictorial comparison, shapes and symbols.
- 4 Develop and Demonstrate oral and written communication Skills such as Negotiation Skills, Meeting Skills, Interview Skills, Report Writing

# Unit I

Motivation: Introduction to Motivation, Relevance and Intrinsic and Extrinsic Motivation, Achievement motivation, Assessment of Motivation.

# Leadership: Characteristics of a good leader. Styles of leadership (Transformational, Transactional,

Charismatic).

# . Unit III

Aptitude: Meaning and measurement, problem solving abilities, logical reasoning skills, verbal and numerical reasoning, Pictorial comparison, shapes and symbols.

# Unit IV

Communication Skills: Report Writing, Negotiation Skills, Meeting Skills, Interview Skills.

- 1. Organizational Behaviour by Stephen Robbins, Pearson Education.
- 2. Organizational Behaviour by Fred Luthans, Tata McGraw Hill.
- 3. Handbook of Technical Writing by David A.McMurrey and Joanne Buckley by Cengage Learning.
- 4. Handbook of Practical Communication Skills by Chrissie Wright, Jaico Publications, Mumbai.
- 5. Effective Technical Communication by M. Ashraf Rizvi, Tata McGraw Hill.
- 6. Model Business Letters, E-mails & Other Business Documents, 6<sup>th</sup> Edition, by Shirley Taylor, Pearson Education.
- 7. Communicative English for Engineers and Professionals by Nitin Bhatnagar and Mamta Bhatnagar, Pearson Education.